CHARLES et al.: DOMAIN ADAPTATION FOR UPPER BODY POSE TRACKING 1

Domain Adaptation for Upper Body Pose
Tracking in Signed TV Broadcasts

James Charles' 1 School of Computing
j.charles@leeds.ac.uk University of Leeds

Tomas Pfister? Leeds, UK

tp@robots.ox.ac.uk 2 Department of Engineering Science
Derek Magee' University of Oxford
d.r.magee@leeds.ac.uk Oxford, UK

David Hogg'

d.c.hogg@leeds.ac.uk

Andrew Zisserman?
az@robots.ox.ac.uk

Abstract

The objective of this work is to estimate upper body pose for signers in TV broad-
casts. Given suitable training data, the pose is estimated using a random forest body joint
detector. However, obtaining such training data can be costly.

The novelty of this paper is a method of transfer learning which is able to harness
existing training data and use it for new domains. Our contributions are: (i) a method
for adapting existing training data to generate new training data by synthesis for signers
with different appearances, and (ii) a method for personalising training data. As a case
study we show how the appearance of the arms for different clothing, specifically short
and long sleeved clothes, can be modelled to obtain person-specific trackers.

We demonstrate that the transfer learning and person specific trackers significantly
improve pose estimation performance.

1 Introduction

We tackle the problem of tracking the upper body pose of people in sign language video. Our
source material is signed TV broadcasts incorporating a person translating what is spoken
into sign language. The main motivation for tracking the pose is to automatically learn to
recognise sign language [2, 6, 8], where upper body layout is of great importance. Tracking
is non-trivial due to changing background (the signer is overlaid on the broadcast video, as
shown in Figure 1), and also because the signer changes between broadcast and so there are
variations in shape and clothing. Furthermore, large quantities of video data are required to
learn even a modest number of signs [2, 6], implying the tracker has to be reliable over long
video sequences and for multiple signers, and require little or no human supervision.

A number of upper body pose estimators have been applied to this type of data including
a method by Fergie et al. [9], capable of tracking in real-time, but requiring many frames of
video to be annotated and was not shown to generalise to new signers. A tracker by Buehler e?
al. [3] had the capability to produce accurate pose estimates for hours of video sequences, but
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Figure 1: Training an upper body joint detector using knowledge from the source domain. In this example, the
transfer is from a source domain (a) where signers wear long sleeves to a target domain (b)—(d) where signers wear
short sleeves. The red and green lines on the signer show the output pose. The target domain results show: (b) the
detector trained directly from the source domain; (c) trained from initial semi-synthetic images constructed using
the source domain; and (d) from personal semi-synthetic images constructed from both source and target domain.
(e) Accuracy of (b)—(d) in detecting the wrist joint in the target domain. Accuracy is percentage of predicted joints
within a distance d pixels from ground truth (scale bar shown in top left of (a)). Note the improvement brought by
the two stages — for example the accuracy almost doubles at 8 pixels.

also required manual annotation for initialisation and did not run in real-time. However, due
to the extensive amount of tracking output available through this method, Pfister ef al. [12]
were able to use it to train a robust real-time tracking system capable of generalising to
new signers provided their appearance was similar to those in training. This was a major
limitation though, as it was unable to deal with significant changes in appearance, such as
clothing with different sleeve lengths.

In this paper we develop an upper body pose estimator that significantly extends the set
of videos that can be used for sign language learning. In general discriminatively trained
algorithms do not generalise well to domains that differ from those that they were trained on.
We demonstrate how to transfer training data from a source domain to target domain when
features are non-transferable. To this end, we make the following contributions: (i) show
how to use side-information about a signer’s appearance in clothing in the target domain to
adapt a tracker, (ii) we create a system for producing semi-synthetic training data of sign
language signers with control over both appearance and pose, (iii) an approach for refining
the synthesis process to produce personalised upper body trackers, and (iv) we add additional
features to the tracker of Pfister ef al. [12] to improve tracking performance.

In this work we use a random forest body joint detector [12]. This requires large amounts
of diverse training data for good generalisation performance [16]. The problem of obtaining
sufficient training data was solved in [12] by using a manually trained tracker [3] to annotate
training material. However, the tracker was only designed for application on signers wearing
long sleeved clothing such as those shown in Figure 1(a). Our target domain will be signers
wearing short sleeved clothes, shown in Figure 1(b). We generate training data for the target
domain from a source domain of long sleeved clothes in two stages. Stage 1 (Section 2)
uses material from the source domain to generate semi-synthetic training data of signers
wearing sleeves of a specific length. With this, one can retrain multiple general upper body
pose trackers for a particular sleeve length, as shown in Figure 1(c). Stage 2 (Section 3)
re-synthesises the training data to become signer specific. Then the refined semi-synthetic
data is used to train a personalised tracker tuned to a particular person’s arm shape and sleeve
length, as shown in Figure 1(d). Each step contributes a significant boost to pose estimation
performance, as can be seen in Figure 1(e). The dramatic improvement in joint prediction
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accuracy is very visible in a temporal sequence, as shown in the video available online. '
Related work. Previous work for sign language recognition in videos has relied on accu-
rate hand tracking. It is popular to use skin colour for hand detection [3, 5, 8, 12, 17], but in
most cases this has been applied to videos of signers only wearing long sleeves. Although
other detectors based on sliding window classifiers using Haar-like image features [10, 11]
have been used, skin colour is a strong cue which should not be ignored. Unfortunately
skin colour is a non-transferable feature between signers wearing long sleeves (only show-
ing hand skin) and those wearing short sleeve clothing (showing arm skin). To harness the
real-time potential of the upper body detector by Pfister et al. [12] for short sleeve sign-
ers, we propose to synthesise bare arms onto videos of long sleeved signers where training
annotation is available.

Using synthetic images for training pose estimators has been successful in the past [1,
7, 14, 15, 16, 18]. Of particular note is the work by [16] where huge quantities of depth
images were synthesised for training a full upper body pose detector. In our case, we adopt
a similar approach to generate large amounts of data, but instead combine real data from
signers wearing long sleeves and overlay synthetic sleeve information. This method can be
thought of as transfer learning where knowledge gained from learning one task is transferred
to another related task. Interestingly, Farhadi ef al. [8] used computer-generated avatars to
transfer models of sign language to real signers. However, their method of tracking was not
learnt from generated data, but rather hand-crafted for signers wearing long sleeves.

2 Synthesising Training Images

Our aim is to train a random forest joint detector, similar to Pfister et al. [12], for use in
videos where signers are wearing short sleeves. Training of such a system requires thousands
of images with annotated body joint locations. Currently the only signed TV broadcast data
available in such quantity with annotations (automatically produced [3]) contains signers
only wearing long sleeves. In this section we show how to transfer knowledge learnt from the
data containing long sleeved signers and create thousands of semi-synthetic training images
for signers wearing short sleeves. Our system is capable of generating realistic training data
with full control over sleeve length as well as pose. Using this data we train a general random
forest joint detector tuned for a particular sleeve length.

Input into our joint detector is a colour posterior (CP) image illustrated in Figure 2(a),
which is a transformation of the original raw RGB image. The CP image highlights skin,
torso and background regions which are important for tracking. To generate semi-synthetic
data of signers wearing short sleeves, we combine the realism from CP images of signers
wearing long sleeves and augment them with bare arm information. By combining real data
with synthetic arm data our synthesiser maintains a greater degree of realism.

Our method for generating semi-synthetic data for tracking a target signer wearing short
sleeves takes the following key steps: (i) obtain real colour posterior images and body joint
locations of signers wearing long sleeves, (ii) measure the sleeve length of the target signer,
(iii) form an arm-skin template for upper and lower arms based upon measured sleeve length,
and (iv) synthesise bare arm skin colour on the real CP images according to provided joint
locations and arm templates. Details of these steps are given below:

Colour posterior (CP) image. Predicting body joint locations greatly benefits from using
information regarding the colour of skin, torso and background. Colour posterior values of
the raw RGB images are formed in the same manner as in [12] i.e. using skin, torso and

mttp://www.robots.ox.ac.uk/~vgg/research/sign_language
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background colour distributions built from foreground/background segmentation [13] and
patches of face and torso detections. A CP image is formed by quantising and scaling the
colour posterior values to lie between 0 and 255, with the red, green and blue channel of the
image representing the skin, torso and background respectively.

We choose to synthesise CP images over the original RGB image because it contains less
information and is therefore easier to model and synthesise accurately. For instance, the CP
image removes or at least significantly reduces variations due to texture and lighting effects
present in raw RGB image content. Also, the colour distributions used to produce the CP
image are fairly peaked, resulting in high confidence for skin, torso and background regions.
This has the effect of producing CP images with much smaller variation in pixel values than
the original RGB image.

Sleeve length. Sleeve length of a target signer is provided as a value between 0 and 1,
which is the normalised length of the sleeve between the signers shoulder and wrist. For
example, a sleeve length of 0.5 would represent fully sleeved upper arm and bare lower arm,
and a sleeve length of 0.3 would be for a shirt, see Figure 2(a). For a target signer, sleeve
length is measured manually on a single image.

Long sleeve data. To produce a large number of synthetic CP images covering a wide
range of plausible upper body poses, we obtain thousands of real CP images of long sleeved
signers, as shown in Figure 2(b). Upper body joint locations for the head, wrists, elbows and
shoulder are provided by an automatic upper body tracker by Buehler ez al. [3].

Arm template. The appearance of bare arms in a CP image is encapsulated using four
rectangular templates describing upper/lower and left/right bare arms in canonical form, as
shown in Figure 4. For each pixel in the template, the probability of observing a colour
value is stored as an individual colour distribution. Skin regions in the CP image are pre-
dominantly red but also contain values from the green and blue channels. These templates
can be visualised by displaying the most likely colour value per pixel. In Figure 4 the four
initial templates are illustrated in this manner. Notice how bare arm shape is implicitly en-
coded by the model, with red regions depicting the skin of a bare arm. The initial template
is automatically altered to represent a particular sleeve length by simply replacing an upper
portion of the template with non-skin distributions.

Arm template initialisation. Initial templates are formed by roughly approximating the
shape of fully bare upper and lower arms. The shapes used are crude tapered rectangles from
elbow to wrist for lower arms, and shoulder to elbow for upper arms, as shown in Figure 4.
All pixels within arm regions represent the same colour distribution. This distribution is
learnt from small patches of skin regions in long sleeved signer videos extracted at the head
location. Non-skin regions generally contain much less red than green and blue within the
CP images. Therefore, we artificially build a colour distribution for non-skin regions in the
initial arm template which gives any red colour value greater than 128 (i.e. skin colour) a
zero probability and equal probability for all other colours.

Synthesising short sleeve data. CP images of signers wearing long sleeves, examples of
which are shown in Figure 2(b), are modified so they appear to contain short sleeves of a
particular length. Colour values in the CP image are replaced by skin colour posterior values
using the arm template which is adjustable for sleeve length. The arm template is positioned
according to the provided joint locations and is used as a stencil for placing skin colour
values in the correct arm shape, as shown in examples in Figure 2(c). Foreshortening of the
arm part is handled naturally by anisotropic scaling of the template in the shoulder/elbow-
to-elbow/wrist direction for upper/lower arm parts. Distributions per pixel in the template
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Figure 2: Stages in synthesising training data. Rows depict different sleeve length (sleeves in the top row are
shorter than in the bottom row). (a) Raw RGB image and CP image counterpart of short sleeve signers. (b) Example
long sleeve signers and CP images. (c) Synthetically produced CP images of short sleeves using CP images from (b)
and of initial arm templates. (d) Personalised synthesis using learnt arm templates. For closer comparison, rotated
left arms of the synthetic images in (c) and (d) are shown in (e) and (f) respectively.

are used to generate CP colour values. If the colour value is most likely to be skin, i.e.
has a greater red value than green or blue, the colour is copied to the corresponding pixel
of the underlying real CP image. CP colour values are generated by sampling from the
distributions independently per pixel in the template. This adds variation to the synthesised
CP colour which reduces the risk of the random forest joint detector becoming over-trained
on a fixed value.

3 Personalising the synthesis

In this section the process of creating semi-synthetic images to automatically train a sleeve
length-specific joint detector is taken a stage further. Here, we learn person-specific arm
templates to form personalised synthetic training data (depicted in Figure 2) and person-
specific upper body trackers. Figure 4 shows examples of personalised arm templates learnt
from the signer in Figure 3(a). We show how one can automatically learn arm templates
using no manual annotation. This method continually alternates between updating the arm
templates and re-training a random forest joint detector. The steps of the method begin as
in Section 2 for producing initial semi-synthetic CP images with a sleeve length matching
a target signer. The refinement process continues as follows: (i) train a random forest joint
detector on semi-synthetic images, (ii) apply the joint detector to a sample of frames of the
target signer, (iii) refine the detections using a sample and verify approach, (iv) learn signer-
specific arm templates from refined joint locations, and (v) re-synthesise semi-synthetic CP
images with personalised arm templates. This process can be repeated from step (i) onwards
for further refinement until no change occurs in the arm templates.

3.1 Sample and verify

A random forest body joint detector trained on semi-synthetic images is applied to a set of
CP images containing a short sleeved signer, example shown in Figure 3(a)-(b). The random
forest provides a confidence map per joint per pixel, see Figure 3(c). Different colours in
the map represent different joints, the more intense the colour the higher the likelihood of a
joint. The confidence map can be used to infer body joint locations by choosing points which
have maximum confidence per joint independently. However the most confident location is
not always the correct location and the independence assumption is incorrect.

We address these problems by adopting a sample and verify approach similar to Buehler et
al. [3] and Charles & Everingham [4]. Joint locations are sampled from the confidence map
and scored with a verification function simultaneously using a function which considers the
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Figure 3: Illustration of sample and verify procedure. (a) Target signer and (b) CP image. (c) Shows body joint
confidence map from initial forest, (d) confidence map produced with a personalised forest and (e) the body joint
colour key. Most likely whole-image templates using initial (f) and personalised (g) arm templates, computed by
sampling joint locations from (c) and (d) respectively. The personalised model produces both better joint samples
(most notably for right wrist) and likelihood function.
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Figure 4: Initial and personalised arm templates. The personalised arm and torso/head templates are for the
signer in Figure 3(a).

whole image content. This gives a chance to locations with weak confidence plus considers
all joints dependently. The sampling process is repeated and the best scoring sample chosen.
Although this process is useful for improving joint detections, the refinement process is slow
and one loses real-time performance. However, here we only apply the method offline to a
sample of frames for more accurately learning arm templates.

3.2 Verification function

Poses sampled from the confidence map are scored using a generative model of the whole
CP image. A whole-image template, similar to the arm templates, but of the whole CP image
is formed based on a sampled pose. An illustration of a whole-image template is shown in
Figure 3(f) for a pose sampled from (c). If x, is the colour value of a pixel in the CP image
at pixel location ¢, then the probability of observing colour value x, is given by p(x4|®),
which is the distribution at location ¢ in the whole-image template. Pose is represented by ®
and controls the formation of the whole-image template. The verification scoring function
is the log-likelihood of observing the CP image given a pose ® and is calculated as follows:
L= 22/:1 log p(x,4]®), where N is total number of pixels in the image. To construct a whole-
image template it is first necessary to build a template of the target signer’s torso and head.

Torso/head template. A signer-specific torso/head template similar to arm templates is
learnt from a training set of CP images of the target signer. Images are aligned according
to the head location (provided by a face tracker). A distribution over colour values at each
location in the template is built from colour values of corresponding pixels in the training
set. A pixel in the training set only contributes to the distribution if lying within a bounding
box around the face, or does not represent the arms, i.e. more green or blue. An example
torso/head template is illustrated in Figure 4, learnt for the signer in Figure 3(a).

Whole-image template. By transforming arm skin and torso templates according to a pro-
vided pose ® one can form a whole-image template, which represents the input CP image.
An illustration is shown in Figure 3(f) for a pose sampled from (c). Each pixel in the whole-
image template is represented by a colour distribution chosen from one of the five trans-
formed templates. This choice is made per pixel and decided upon in a front to back manner,
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based on the depth ordering of the body parts. A depth order is assumed as follows: lower
arms are in front of upper arms and upper arms are in front of the torso-head. Distributions
in the arm templates are only used if they represent skin i.e. the distribution gives highest
probability for red colour values than green or blue values.

3.3 Learning arm templates

Arm templates are learnt for a particular signer by detecting joints, using the above approach,
on a training set of CP images. Detections are used to extract rectangular windows of upper
and lower arm parts and place them in canonical form. This results in four sets of training
windows for upper/lower and left/right arm parts. For each arm part, the corresponding
training windows are used to learn colour distributions for an arm template. Each pixel in
the template represents a distribution which is learnt from colour values of corresponding
pixels in the training windows.

Re-training the joint detector. Personalised arm templates are used to retrain a person-
specific random forest joint detector. Furthermore, by iterating the above procedure the
refinement increases the fidelity of whole-image templates and continually improves the
performance of our verification function before reaching saturation in three iterations. Illus-
tration of the improvement in joint confidence maps produced using the initial and person-
alised random forest are shown in Figure 3(c) and (d) respectively. Figure 3(d) shows tighter
confidence close to correct joint locations than in Figure 3(c). The most likely whole-image
templates using poses sampled from (d) for the initial and personalised arm templates are
compared in Figure 3(f) and (g) respectively, notice using the personalised templates choses
a better pose sample.

4 Implementation details

In this section we provide some of the details in our system for producing semi-synthetic CP
images and refining the arm templates. We also describe some improvements to the random
forest joint detector by Pfister ef al. [12], which we use to obtain upper body poses. These
include a balancing term used during training, addition of a mid lower arm joint and also a
fast method for re-training the forest.

Arm template distributions. The colour distributions at each location in an arm template
are represented using histograms. We use 10x10x10 bins for the red, green and blue channels
respectively. Similarly for torso/head and whole-image templates.

Canonicalising the arm. Arm templates represent upper or lower arms in canonical form.
We use a template of size 100 by 21 pixels. Two fixed points in the template represent
two different body joints, as shown in Figure 4. The anchor points are used to rotate and
anisotropically scale the templates over joint locations for producing the whole-image tem-
plate. The reverse transforms are used for extracting training windows of arm parts for
learning the templates. Note the hand is also included in the lower arm templates in order for
hands to be included in the verification function. However, for synthesising CP images, the
hand regions are cut off and only the arm part used. This has the effect of leaving the hands
of the long sleeved signers intact in the semi-synthetic CP images.

Upper body joint detector. We use a random forest upper body joint detector based on
our previous work [12], which detects wrists, elbows, shoulders and head. A failing of this
system is that predicted joints can mix-up the left and right wrist. We propose a fix which
retains real-time performance of the tracker by including another two joint labels for both left
and right mid lower-arms. The mid-arm joints are predicted with higher accuracy than the
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wrists (comparison show in Table 1), and can be used for correcting inaccurate wrist joints.
Two hypotheses are tested: (i) wrist joints are mixed-up and (ii) wrist joints are correct,
verified by scoring each option, where the lowest score wins. Our scoring function is the
total least squares error in fitting two lines, one per lower arm, between elbow, mid-arm
and wrist locations. Training points for mid-arm locations are computed for the long sleeve
videos by taking mid points between provided elbow and wrist locations.

Training the joint detector. Each node in each tree or the random forest consists of a
test function. These test functions are learnt recursively from the root node down to the
leaf nodes where a distribution over body joint labels is stored. When a training sample S
entering the tree is split, data samples satisfying the test Sy, go left down the tree and all other
samples Sg right. The test function is learnt by maximising the drop in impurity of a split.
Pfister et al. measured impurity using the Gini entropy, which we augment with a balancing
term B. The balancing term helps adjust the ratio of data items going left and right. This
assists in reducing tree depth as well as acting as a regulariser to avoid over-fitting. Our drop
in impurity measure is formally written as:

Ai(S) = i(S) = PLi(S") — (1= PL)i(S®) — B, (M
where Py, is the fraction of data points that go to the left set and i(.) is the Gini impurity
measure. The term 3 = A (PLL + é - |PLL - i \), where 4 controls the weight between the
measure of impurity and degree of balancing.

Re-training the forest. It is computationally expensive to train the random forest body
joint detector in [12], taking hours of training for only a few hundred images. We found
it sufficient to only learn the forest test functions once on the initial semi-synthetic images.
When re-training on personalised synthetics, a faster approach can be used as follows: (i)
for each tree in the forest set all distributions at the leaf nodes to uniform, (ii) Take a random
sample of data items from the personalised semi-synthetic CP images, and (iii) evaluate the

leaf node assignment for each data item and re-calculate the distributions at the leaf nodes.

S Experiments

In this section we test components of our system by judging the detection performance of
upper body joints in videos of signers wearing clothes of various sleeve length.

Short sleeve videos. Experiments are conducted on 5 videos containing signers wearing
different length sleeves. Sleeve length varies between 1 and 0.2.

Long sleeve videos. For generating semi-synthetic CP images, frames from 10 videos con-
taining a mix of different signers wearing long sleeves are used. Automated ground truth
joint locations are provided by Buehler et al.’s tracker.

Testing data. Each of the 5 short sleeve videos is split into two sections. The first 60%
is used for training and the last 40% is used for testing. The performance of our system
is evaluated on 200 diverse frames selected from each testing section, 1000 frames in total.
Frames are selected by clustering the CP images of the testing section using k-means into 100
clusters and sampling 2 frames from each cluster. One frame is chosen closest to the cluster
centroid, and the second frame chosen within the cluster but furthest from the centroid. This
sampling scheme results in a good coverage of the pose space, meaning we do not favour
poses which occur more often. Testing frames are manually annotated with joint locations.
Accuracy is recorded as an average per joint class over all testing frames.

Evaluation measure. An estimated joint is deemed correctly located if it is within a set
distance of d pixels from the ground truth. Accuracy is measured as the percentage of cor-
rectly estimated joints.
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Figure 5: Per-joint average accuracy against allowed pixel distance from ground truth.

Method Head Wrists Elbows Shoulders Lower Mid-arms  Average
Pfister et al. 94.3 16.4 58.1 75.2 20.8 483
Initial without balancing ~ 91.2 23.7 76.8 72.4 42.7 58.1
Initial with balancing 93.5 28.7 76.8 76.8 49.9 62.0
Personalised 95.8 46.6 80.7 81.3 59.6 70.2

Table 1: Average accuracy of per joint estimates. A joint is deemed correct if at most 5 pixels from manual ground
truth. Personalising the training shows significant improvement.

Semi-synthetic training data. Five sets of semi-synthetic CP images are generated from
the ten long sleeve videos. Each set formed with a sleeve length corresponding in a one-to-
one fashion with the short sleeve videos.

Initial forest training. Each tree in the forest is trained on 2,000 CP images sampled from
the semi-synthetic training data. Sampling is conducted by clustering the automated ground
truth joint locations and sampling from the clusters uniformly. It was found a tree depth of
64 and 8 trees in the forest was optimal.

Personalised semi-synthetic training data. Five sets of arm and torso/head templates are
learnt, one set per short sleeve signer video. Each set learnt from 4,000 CP images sampled
from the training portion of each video. For the sample/verity step we only sample 10 joint
locations per wrist, for all other joints the most confident joints from the forest are chosen.

Personalised forest training. Each tree in the initial forests is retrained using the respec-
tive personalised semi-synthetic training data by sampling 2,000 CP images and using them
to update distributions at the leaf nodes. We found two iterations of the refinement experi-
ment sufficient, with little improvement thereafter.

Forest balancing. A comparison between using forests with (A = 0.01) or without (A = 0)
a balancing term (see Equation 1) is compared for initial forests (trained on initial semi-
synthetic data) in Table 1. A modest improvement is seen when using a balancing term in
the wrists, lower mid-arm and shoulder joints over not using a balancing term. Therefore,
we also choose to use a balancing term in the personalised forests.

Lower mid-arm joint. Figure 5 demonstrates using lower mid-arm joint helps to improve
the wrist location. It increases accuracy of a wrist joint being within 5 pixels from ground
truth from 51% to 55%.

Our method vs Pfister ef al. A comparison in average joint estimation accuracy is shown
in Figure 5 between forests trained as in Pfister ef al. [12] on the long sleeve videos, the
initial forest (with balancing and mid-arm joints) automatically trained on semi-synthetic
images and the updated forest using personalised semi-synthetic images. All methods work
equally well for head and shoulders with large improvement seen for wrists, elbows and
lower mid-arms. Table 1 shows accuracy when a joint is considered correct at only 5 pixels
from ground truth (scale bar shown in top left of Figure 1(a) for comparison). Using forests
trained on personalised semi-synthetics produces best results for all joint classes. There is a
slightly smaller improvement for the initial synthesis approach.
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6 Conclusion

We have proposed a method for tracking the upper body pose of signers in TV broadcasts.
We achieve this by transferring from existing training material to a new domain, and by au-
tomatically personalising the tracker. This is shown to significantly improve pose estimation
performance.

In future work we intend to automate the process of recovering side-information about
the appearance of a target signer, such as the clothing sleeve length.

Acknowledgements: We are grateful to Patrick Buehler for his generous help. Financial
support was provided by the EPSRC grant EP/I012001/1.
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