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Abstract

This thesis presents new methods in two closely related areas of computer

vision: human pose estimation, and gesture recognition in videos.

In human pose estimation, we show that random forests can be used to estimate

human pose in monocular videos. To this end, we propose a co-segmentation al-

gorithm for segmenting humans out of videos, and an evaluator that predicts

whether the estimated poses are correct or not. We further extend this pose

estimator to new domains (with a transfer learning approach), and enhance its

predictions by predicting the joint positions sequentially (rather than indepen-

dently) in an image, and using temporal information in the videos (rather than

predicting the poses from a single frame). Finally, we go beyond random forests,

and show that convolutional neural networks can be used to estimate human pose

even more accurately and e�ciently. We propose two new convolutional neural

network architectures, and show how optical flow can be employed in convolu-

tional nets to further improve the predictions.

In gesture recognition, we explore the idea of using weak supervision to learn

gestures. We show that we can learn sign language automatically from signed TV

broadcasts with subtitles by letting algorithms ‘watch’ the TV broadcasts and

‘match’ the signs with the subtitles. We further show that if even a small amount

of strong supervision is available (as there is for sign language, in the form of sign

language video dictionaries), this strong supervision can be combined with weak

supervision to learn even better models.
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Chapter 1

Introduction

1.1 Objective and Motivation

The objective of this thesis is to advance the state of the art in two closely related

areas of computer vision: human pose estimation and gesture recognition.

In human pose estimation, the objective is to track the positions of human body

parts in images and videos (as shown in Figure 1.1). In particular in this thesis,

we focus on estimating human pose from RGB images without depth. While some

commercial systems (such as Kinect) have recently shown some promise tackling

this problem using depth sensors, human pose estimation from raw RGB remains

very challenging.

In gesture recognition, the objective is to recognise intentional human body

movements (most commonly expressed by hands and face), and classify them as

one of many gestures in some predefined gesture language. This is, likewise, a

10



1.2. Applications 11

Input frame Estimated pose

Figure 1.1: Human pose estimation. Here shown for upper-body joints.

very challenging task – particularly for complex gesture languages with 1,000s of

gestures (such as sign languages).

These two areas are closely related: human pose estimation methods are often

used to localise the body parts (particularly the hands and face) to aid gesture

recognition (e.g . by simplifying the task to recognising gestures by matching the

trajectories of the hands; or using hand positions to derive the shape of the

hands).

1.2 Applications

Robust pose estimation has a wide range of applications – including tracking

body parts in gaming, human-computer interaction, augmented & virtual reality,

healthcare; and helping solve other challenging problems, such as human action

recognition, activity analysis, automated surveillance, content-based image in-

dexing and retrieval, markerless motion capture, and gesture recognition.

Likewise, gesture recognition has a plethora of applications. It is being very

actively explored both in academia, and also in industry for various applications
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– e.g . for video gesture control (GestureTek, Omek, Flutter), virtual reality con-

trol and ‘telepresence’ (Oculus Rift, Nimble, Qualcomm), gesture-based computer

control for surgeons (GestSure), human-computer interaction (Leap Motion, eye-

Sight), rehabilitation of people after serious accidents (Roke), and sign language

recognition (e.g . using the Leap Motion tracker – MotionSavvy).

Sign language recognition. One application this thesis will explore is sign

language recognition. Here, the task is to automatically identify a sequence of sign

language gestures and understand their meaning. The ultimate aim is a method

that automatically translates sign language into text/speech, enabling deaf people

to communicate with hearing people without a human interpreter. To date, the

few commercial translation services in existence rely on human translators, who

perform the translation either in person or online using a webcam. So, needless to

say, a robust automated solution for this application could have a tremendously

positive impact on the daily lives of deaf individuals throughout the world.

These sign languages (‘spoken’ by about 70 million deaf people [World Feder-

ation of the Deaf]) consist of 1,000s of gestures which convey information using

multiple channels: manual (hand gestures: including hand shape, movement,

location, hand orientation), non-manual (facial expressions, body posture, head

pose, lip patterns), and finger spelling (in which words are ‘spelt out’ with ges-

tures, letter by letter) [Stokoe, 2005]. Sign language is not an international lan-

guage – e.g . there is a separate sign language for America, Britain and Swe-

den [Wheatley and Pabsch, 2010]. They evolved independently of the spoken

languages around them, and possess the structural properties of other human
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languages (although with a quite di↵erent grammar from e.g . English) [Stokoe,

2005].

One approach to tackling sign language recognition is to collect a large dataset

of gestures in a given sign language (say British Sign Language) performed by

many people, and hand-labelling the gestures. However, this is (i) quite expen-

sive (as it requires a lot of labour-intensive manual labelling); (ii) has to be done

separately for each sign language; (iii) needs to be done for a large number of

signers (to deal with inter-signer variations); and (iv) needs to be regularly re-

peated (because sign languages are continually evolving). These challenges have

motivated investigations into alternative forms of supervision – most prominently,

from signed TV broadcasts.

Learning sign language by watching TV. The idea here is to automatically

learn sign language by letting algorithms ‘watch’ sign language TV broadcasts

with subtitles (with an overlaid signer translating to the deaf audience), and

‘match’ the signs with the subtitles – much like what a human would do when

attempting to learn a (sign or spoken) language. Since sign language-interpreted

broadcasts are shown for many hours every day (and in many di↵erent sign

languages), this provides a near-infinite resource of training data.

In particular, this material can be exploited to learn signs corresponding to

English (or Swedish, Chinese ...) words in the subtitles, e↵ectively building a

database of word-sign pairs for a large number of signs and signers (which can

be used to train a sign language to text translator). The mechanism for learning
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the sign generally exploits the supervision by, for a given English word, selecting

a set of subtitles and videos that contain the word (‘positive sequences’) and

a set of subtitles and videos that do not (the ‘negative sequences’), and then

looking for signs that are common in the positive and do not occur in the negative

sequences. Although this may sound straightforward, in practice doing this is

very challenging due to the weak and noisy nature of this supervision (as we will

discuss below).

1.3 Challenges

1.3.1 Pose estimation

Despite a long history of research, human pose estimation remains a very chal-

lenging task in computer vision. It is very challenging (as demonstrated in Fig-

ure 1.2) due to the: (i) high variability of human visual appearance in images

(due to viewing angle, lighting, di↵erent clothing, background); (ii) variability

in human body shape (size of di↵erent body parts); (iii) occlusions (either by

the human itself or by objects between the camera and the human); (iv) high

dimensionality of the possible poses (think of the crazy poses of yoga masters!);

(v) loss of 3D information in RGB images (leading to additional ambiguities);

and (vi) motion blur due to the low frame rate of many cameras.

A few of these challenges are shown for signed TV broadcasts in Figure 1.3:

self-occlusions of the person, self-shadowing, motion blur due to the speed of the

gesturing, overlapping hands, multiple people behind each other, and an ever-
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Figure 1.2: Challenges in human pose estimation. The examples here
demonstrate the high dimensionality of human poses.

changing background (which can be very similar in colour to the foreground).

1.3.2 Gesture recognition

Gesture recognition is challenging because of both high inter-person and intra-

person variability. For example, sign languages contain a lot of variations in:

(i) speed (e.g . a gesture could be 0.2s long or 2s long, depending on how much in

a ‘hurry’ the gesturer is); (ii) positional (e.g . some persons – or sometimes even

the same person on di↵erent days – may perform the same gesture at chest-level,

some in front of the face – yet they may have the same meaning); (iii) regional

(e.g . the same ‘word’ can be a completely di↵erent-looking sign in di↵erent regions
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(a) (b) (c) (d)

Figure 1.3: Challenges in human pose estimation for sign language TV
broadcasts. (a) Similar foreground and background colours render the colour
cue less informative; (b) motion blur removes much of the edges of the arm;
(c) another face in the background; (d) proximity of the two hands makes the
assignment to left and right hand ambiguous.

of the UK).

The main challenge, however, is that the salient information ‘channel’ varies

a lot for di↵erent gestures/signs – for some signs the main ‘channel’ might be

simply the start and end position relative to face of the right hand (i.e. speed,

intermediate hand positions between start and end, and absolute position are

irrelevant); in another, the channel might be the speed and the trajectory of both

hands plus a particular facial expression (i.e. the intermediate hand positions

– the start and end positions are irrelevant); or the salient channel could be a

hand movement away from the body towards the camera (which wouldn’t be

discernible in RGB without depth).

Discerning the salient information is made even more di�cult by coarticulation

in gesturing, where the transition from the previous and to the next gestures

a↵ect the ‘current’ gesture (by essentially ‘cutting away’ parts of the informa-

tion in the current gesture and making it look less like the ‘prototype’ of the

gesture). Moreover, producing linguistically valid translations of complex ges-
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Subtitle duration (400 frames)

Sign duration (7-13 frames)

Any subtitle-text word has only 
a 60% chance of being signed

Weak:

Noisy:

Figure 1.4: Challenges in learning sign language by watching TV. The
supervision is inherently weak (as the subtitles only define roughly where a sign
occurs) and noisy (subtitled words aren’t always signed).

ture languages (such as sign language) also requires dealing with grammar issues

such as word order, modifiers, compounding (new concepts derived by combining

words), placement (placing particular referents to a particular position in the

signing space), and many more.

Challenges in learning sign language by watching TV. Above we briefly

touched upon the idea of automatically learning sign language by watching signed

TV broadcasts with subtitles. This is in fact very challenging due to the weak

and noisy nature of this supervision, as illustrated in Figure 1.4. The supervision

is weak because the subtitles are not temporally aligned with the signs – a sign

(typically 8–13 frames long) could be anywhere in the overlapping subtitle video

sequences (typically 400 frames). It is noisy because there the occurrence of a

word in the subtitle does not always imply that the word is signed. Together,

these points make this correspondence problem (trying to identify the temporal

window of the sign) very di�cult to solve.
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In addition to the challenging supervision, previous research tackling sign lan-

guage recognition using this approach [Buehler et al., 2009, Cooper and Bowden,

2009] has also been held back by the di�culty of obtaining a su�cient amount of

training data with human pose annotated (which is used to simplify the matching

bit of this correspondence problem). This is one of the motivators for our work

on fast, accurate and automatic human pose estimation in this thesis.

1.4 Contributions and Thesis Outline

For human pose estimation (Part I), we make the following contributions:

1. Chapter 4: We show that random forests can be used to estimate human

pose in monocular videos (in the spirit of Kinect, but here for RGB rather

than RGB-D videos). In addition, we propose a co-segmentation algorithm

for segmenting humans out of videos (which we use in our pose estimator),

and an evaluator that predicts whether the estimated poses are likely to be

correct or not.

2. Chapter 5: We further extend this random forest-based pose estimator

to new domains (with a transfer learning approach), and enhance its pre-

dictions with new methods that predict human joints sequentially (rather

than independently), and use the temporal information in the videos to

‘propagate’ pose prediction confidence temporally (rather than predicting

the pose from a single frame).
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3. Chapter 6: We show that convolutional neural networks can be used to

estimate human pose even more accurately and e�ciently than with a ran-

dom forest. We propose two new convolutional network architecture types

for human pose estimation, and show how optical flow can be employed in

convolutional nets to further improve the predictions.

For gesture recognition (Part II), we make the following contributions:

1. Chapter 7: We explore the idea of using weak (instead of strong) supervi-

sion to learn gestures, and show that we can learn sign language automati-

cally from signed TV broadcasts with subtitles. Furthermore, we show that

correlations between the mouth and hand movements of signers can be used

to significantly cut down the search space when automatically learning sign

language gestures using this approach.

2. Chapter 8: We show that if even a small amount of strong supervision is

available (as there is for sign language, in the form of sign language video

dictionaries), this strong supervision can be combined with weak supervi-

sion to learn even better models.

1.5 Publications

This thesis has led to eight papers:

1. BMVC’12 [Pfister et al., 2012] (oral). This won the Best paper honourable

mention award and Best video award. (Chapter 4)
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2. IJCV’13 [Charles et al., 2013a] is an extension of the paper published at

BMVC’12. (Chapter 4)

3. BMVC’13 [Pfister et al., 2013]. (Chapter 7)

4. BMVC’13 [Charles et al., 2013b] (oral). (Section 5.1)

5. BMVC’14 [Charles et al., 2014]. This won the Best poster award. (Sec-

tions 5.2 and 5.3)

6. ECCV’14 [Pfister et al., 2014a]. (Chapter 8)

7. ACCV’14 [Pfister et al., 2014b]. (Section 6.1)

8. ICCV’15 (under submission). (Sections 6.2 and 6.3)



Chapter 2

Literature Review

This literature review first discusses past work related to human pose estimation

(Section 2.1), and then to gesture and sign language recognition (Section 2.2).

2.1 Human Pose Estimation

We first review past work on human pose estimation.

2.1.1 Overview

There is a vast array of literature regarding human pose estimation, due to many

applications reliant on analysing people in images and video (gaming, human-

computer interaction, security and gesture recognition).

Looking back at past work on human pose estimation, four distinct eras emerge:

21
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1. Early methods (1980–)

2. Pictorial structure-based methods and poselets (mainly 2000–)

3. Random forests (2011–)

4. Deep convolutional neural networks (ConvNets) (2012–)

The next sections discuss the methods in each of these eras in detail.

These discussions are followed by detailed case studies of two particularly rel-

evant works: (i) [Buehler et al., 2011]: pictorial structures for pose estimation;

and (ii) [Charles et al., 2013a]: random forests for pose estimation. The first

work is used for generating training annotations for a dataset in this thesis, and

Chapter 4 uses the second work.

A comprehensive survey of pose estimation works up to 2011 is provided in [Moes-

lund, 2011].

2.1.2 Early methods

The earliest pose estimation methods addressed the problem with classic model-

based approaches [Bregler and Malik, 1998, Forsyth and Fleck, 1997, Hogg, 1983,

O’Rourke and Badler, 1980, Rohr, 1994]. One of the earliest approaches was

the idea of ‘body plan’ [Forsyth and Fleck, 1997], which models object layout

by defining what parts of an object can be grouped together (and how). [Mori

and Malik, 2002] proposed a simple model for find a nearest neighbour based on

shape context, and transferring joint locations. Other works included retrieving
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poses from segmentations [Ren et al., 2005], and estimating pose directly from

skin colour [Hua et al., 2005].

2.1.3 Pictorial structures and poselets

Pictorial Structures [Fischler and Elschlager, 1973] model the body parts of a

human as a conditional random field (CRF). In most methods, the parts are

parametrised by location (x, y), orientation ✓ and scale s, and correspond to the

human limbs. Generally, the posterior of a configuration of parts is a function

of a unary potential u(I|li) (which evaluates the local image evidence for a part

given a position) and a pairwise potential pw(li, lj) (which is a prior for the

relative positions of parts in the human kinematic chain). Together, these yield

the optimisation target

p(L|I) / exp(
X

(i,j)2M

pw(li, lj) +
X

i

u(I|li)). (2.1)

In most works, the prior M on the relative positions of the parts is a tree, which

enables the model to be fitted to an image in time quadratically proportional to

the number of parts [Fischler and Elschlager, 1973]. Furthermore, [Felzenszwalb

and Huttenlocher, 2000, 2005] show that by restricting the pairwise potentials

to a certain form (using distance transforms), the maximum a posteriori (MAP)

of the above equation can be computed in linear time. Because of the fairly

low complexity of inference of pictorial structures, they have been used in many

applications [Ramanan, 2006, Ramanan et al., 2005, Sivic et al., 2006].
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In more recent work, the focus has been on improving the appearance mod-

els used in pictorial structures for modelling the individual body parts [Alahari

et al., 2013, Andriluka et al., 2012, Eichner and Ferrari, 2009, Eichner et al., 2012,

Ferrari et al., 2008, Johnson and Everingham, 2009, Sapp et al., 2010]. Gradient-

based cues have been used to design better part detectors, for example based on

templates of discriminatively learnt HOG descriptors [Johnson and Everingham,

2009, Kumar et al., 2009]. [Eichner and Ferrari, 2009, Eichner et al., 2012] im-

proved the colour cue by exploiting relations between the appearance of di↵erent

parts of the body. [Sapp et al., 2011] model body joints rather than limbs, and

also track joints across frames, using a set of tree-structured sub-models.

[Yang and Ramanan, 2011, 2013] and deformable part-based models.

Building upon the pictorial structure framework, [Felzenszwalb et al., 2008, 2010]

proposed deformable part-based models. [Yang and Ramanan, 2011, 2013] used a

mixture of deformable parts in a tree structured model to e�ciently model human

pose. They learnt unary and pairwise potentials using the e↵ective discriminative

parts-based model from [Felzenszwalb et al., 2008] (based on structured SVMs).

Unlike in traditional models, their parts corresponded to the mid and end points

of each limb (vs the actual limbs in previous work). The parts were modelled

as a mixture in order to capture the orientations of the limbs, and their method

searches over multiple locations, scales and all part mixtures. This is a well-

performing pose estimator, to which we compare our method in Chapter 4.
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Poselets. Another recent stream of works worth mentioning is ‘poselets’ [Bour-

dev and Malik, 2009, Gkioxari et al., 2013, 2014]. They learn parts by forming

tight patch clusters in both 3D pose and 2D image appearance, clustered with

datasets that have 3D pose annotations. These are then used to train an SVM for

each poselet (cluster), which is used to match poses in a sliding window fashion.

2.1.4 Random forests

A di↵erent approach to part-based models is to tackle the problem of pose esti-

mation holistically, without decomposing the problem into smaller, conditionally

independent pieces. Instead, the pose is estimated directly from the image (often

without any explicitly specified spatial model). We next review recent work in

this line using random forests. In the next section, this will be followed by a

discussion of similar approaches using deep convolutional neural networks.

The innate versatility of random forests (RFs) [Amit and Geman, 1997, Breiman,

2001] makes them suitable for a variety of machine learning tasks [Criminisi et al.,

2012], such as classification, regression and clustering. RFs are a collection of

decision trees, whose split node tests are recursively trained (with supervised

training data) to maximise the information gain at each node going down the

tree. They are naturally multi-class and contain a structure which lends itself to

parallelisation and multi-core implementations [Sharp, 2008]. Along with these

properties, the ever increasing computing power and training data over recent

years has spurred the interest in RFs and fern-based [Ozuysal et al., 2010] meth-

ods in computer vision literature. In particular, as RFs are fast to resolve at
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inference time, many methods have explored using them for real-time applica-

tions of tracking [Lepetit and Fua, 2006, Santner et al., 2010], head pose estima-

tion [Fanelli et al., 2011] and detecting facial feature points [Cootes et al., 2012,

Dantone et al., 2012, Fanelli et al., 2012].

Human pose estimation from depth with Random Forests. For human

pose estimation, notable success has been achieved with random forests using

depth imagery. [Shotton et al., 2011, 2013] segmented a 3D depth map of a

person into body parts and used the segmentation as an intermediate stage for

computing body joint locations. A performance boost to this original method

was proposed by [Girshick et al., 2011], who used regression forests and Hough

voting. Further improvements were obtained by [Taylor et al., 2012] using an RF

to form dense correspondences between depth image pixels and a 3D body model

surface, enabling the use of a one-shot optimisation procedure for inferring the

pose. Recently [Sun et al., 2012] have conditioned the RF on a global variable,

such as torso orientation.

Human pose estimation from RGB with Random Forests. The success

of these RF-based pose estimation methods depends upon the use of depth im-

agery. Depth images are colour and texture-invariant, which makes background

subtraction much easier, and substantially reduces the variability in human ap-

pearance. The remaining variability due to body shape, pose and camera angle

is accounted for by training with large quantities of data. In contrast, in RGB

(without depth), achieving robustness to these variabilities is challenging. To this
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end, in Chapter 4 we propose an upper body pose estimation method that cre-

ates a colour and texture-invariant representation from raw RGB, which enables

the use of random forests for robustly estimating the pose in raw RGB videos.

Another recent work tackling this problem is [Kazemi et al., 2013].

Exploiting spatial information: pose structure and independence of

output variables. Existing random forest-based methods assume indepen-

dence for each output variable, and ignore the output structure [Girshick et al.,

2011, Shotton et al., 2011]. Past solutions to this have been of two kinds: post-

processing methods, and implicit methods. Post-processing methods take the

output of the Random Forests and fit models to them, such as Markov or Con-

ditional Random Fields [Jancsary et al., 2012, Payet and Todorovic, 2010], or

simply filter the output by checking global consistency of local detections [Yang

and Patras, 2013]. Usually post-processing methods are rather slow due to the ad-

ditional overhead. In contrast, implicit methods build constraints between output

variables into the detection method directly during training [Kontschieder et al.,

2013, Tu and Bai, 2010] by passing the output from a sequence of classifiers

as an input into another classifier. In Chapter 5 we present a method for RFs

that address these issues by combining the benefits of both types of approaches

(post-processing and implicit).
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2.1.5 Deep convolutional neural networks (ConvNets)

Many recent works have demonstrated the power of ConvNets in a wide vari-

ety of vision tasks – object classification and detection [Girshick et al., 2014,

Krizhevsky et al., 2012, Oquab et al., 2014a,b, Sermanet et al., 2014, Zeiler and

Fergus, 2014], face recognition [Taigman et al., 2014], text recognition [Alsharif

and Pineau, 2014, Goodfellow et al., 2014, Jaderberg et al., 2014], video action

recognition [Karpathy et al., 2014, Simonyan and Zisserman, 2014] and many

more [Donahue et al., 2014, Osadchy et al., 2007, Razavian et al., 2014]. These

networks comprise several layers of non-linear feature extractors and are therefore

said to be ‘deep’ (in contrast to classic methods that are ‘shallow’).

Recent works have also explored the use of ConvNets for estimating the human

pose. [Toshev and Szegedy, 2014] proposed to use a cascade of ConvNet regressors

to improve precision over a single pose regressor network. [Jain et al., 2014a,

Tompson et al., 2014] proposed a hybrid architecture combining ConvNets with

a Markov Random Field-based spatial model. [Chen and Yuille, 2014] combine

a parts-based model with ConvNets (by using a ConvNet to learn conditional

probabilities for the presence of parts and their spatial relationship with image

patches). E↵ectively, they use ConvNets to learn better appearance features in a

DPM (replacing HOG); the resulting optimisation target is solved as usual with

MAP. [Jain et al., 2014b] investigated the use of temporal information in videos

using ConvNets (using optical flow as a feature). [Tompson et al., 2015] proposed

adding a pose refinement model (based on a Siamese network with shared weights)

upon a rougher pose estimator ConvNet.
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In Chapter 6, we present two computationally e�cient novel network architec-

tures that outperform previous work in video pose estimation.

2.1.6 Case study 1: [Buehler et al., 2011]

[Buehler et al., 2011] uses a generative model for both the foreground (signer)

and background (the image area surrounding the human) to estimate the upper-

body pose with pictorial structures. The foreground is generated by rendering

colour models of the limbs and torso in back-to-front depth order (the ‘painter’s

algorithm’) so that occlusions are handled correctly. The background is likewise

rendered with colour models (which are updated every frame to account for the

changing background). The computational expenses of evaluating the renderings

is reduced by sampling from a pictorial structure proposal distribution.

This previous state of the art method for tracking arms and hands in sign

language TV broadcasts is powerful, but faces two challenges:

1. It requires manual labelling for each new input video. The method

requires 64 manually labelled frames for each new input video, which is around

three hours of manual user input per one hour of TV footage. Manually labelled

data is required to: (i) build the head and torso model (20 shapes per video;

examples shown in Figure 2.2); (ii) learn the part-specific colour distributions (5

segmentations shown in Figure 2.3); and (iii) create HOG templates (39 frames

with the arm configuration manually specified, see Figure 2.1e).
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(a) Input image (b) Colour term (c) Gradient term (d) Segmentation (e) Arm pose

Figure 2.1: Overview of [Buehler et al., 2011]. Pose estimation for input im-
age (a) is performed using likelihoods from colour (b) and Histogram of Oriented
Gradients (HOG) (c). The colour term (b) shows the posterior probability for
skin and torso assigned to red and green colour channels respectively. The HOG
term (c) shows the the likelihood at all locations in the image (red indicates high
likelihood) for a learnt lower-arm template (peaking here at the centre of the left
lower arm). Using the colour term (b), the head and torso are segmented (d).
The final arm pose (e) is estimated with a global cost function that uses the
estimated torso and head shape, plus the appearance terms (from colour and
HOG).

2. It is computationally expensive. The method is computationally expen-

sive, which means it cannot be used for real-time pose estimation. On average,

the method takes 100 seconds per frame on a 1.83 GHz machine.

We next give a more detailed description of the method (with figures borrowed

from [Buehler, 2010]). We provide a detailed discussion of this work because this

method is used for generating the ground truth for the pose estimation datasets

used in this work (Chapter 3).

Overview. The generative model in this work explains every pixel in the image

with a cost function which assigns a cost to a given configuration of the upper

body. The pose estimation process is divided into two stages: (1) the shape of

the head and torso, and the position of the shoulders, are estimated; (2) given

the head and torso segmentations, the configuration of both arms and hands is
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Page 2 of 23

Model definition

Model
fitting

Head and torso 
masks

Input image
Head and torso 
segmentation

Figure 2.2: Building the head and torso model for [Buehler et al., 2011]
(Stage 1). Manually labelled masks for the head and torso (for 20 frames) are
fitted to the image using a pictorial structure model with two parts.

estimated with a cost function.

Stage 1: Estimating head and torso positions

The head and torso positions are estimated by segmenting the head and torso

using multiple manually specified candidate shapes as templates, and fitting these

templates to the image using a simple two part pictorial structure (PS) model

(see Figure 2.2). The templates used for fitting are manually specified for each

new input video.

Stage 2: Estimating arm and hand configuration

Global cost function. Given an image I that contains the upper body of the

person and background, the target of this method is to find the hand configuration

L = (b, l1, l2, ..., ln) which best explains the image, where {li} specifies the parts

(limbs), b is a binary variable indicating the depth ordering of the two arms, and
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Figure 2.3: Manual segmentations required for learning part-specific
colour distributions in [Buehler et al., 2011]. For each new input video, a
manually specified segmentation is required (such as this one – into face, hands
and torso).

n = 6 parts (the left and right upper arms, the lower arms and the hands).

The parts li = (si,↵i) are specified by three parameters: (i) scale si (i.e. length

of a part that models foreshortening); (ii) rotation ↵i; and (iii) by the part to

which it is connected (these connections follow the kinematic chain for the left

and right arm respectively as shown in Figure 2.4).

The probability of a given configuration L conditioned on the image I is

p(L|I) / p(L)
NY

i=1

p(ci|�i)
Y

j2{LL,LR}

p(hj|lj) (2.2)

where N is the number of pixels in the input image, ci is the colour of pixel i,

and hj is the HOG descriptor computed for limb j.
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s1

α1

s2

α2

α3

LL

LR

Figure 2.4: Upper body model in [Buehler et al., 2011]. The pose is
specified by 11 parameters – 5 for each arm and an additional binary parameter
b indicating which arm is closer to the camera and hence visible in the case that
the arms overlap.

In addition to the prior term p(L) (described below), this cost function in-

corporates two appearance terms (that are learnt from manual annotation of a

small number of training images) which model the agreement between the image

I and configuration L: colour and gradients (HOG). Both of these terms are

learnt from a small number of manually labelled frames for each new input video

(details below).

Colour term p(ci|�i). This models the likelihood of pixel colours. Given the

configuration L, every pixel of the image is assigned a label which selects which

part of the model is to explain that pixel (background, torso, arm, etc.). The

labelling function is defined algorithmically by rendering the model (Figure 2.4)

in back-to-front depth order (the ‘painter’s algorithm’) such that occlusions are

handled correctly.
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HOG term p(hj|lj). This models the likelihood of gradients. A HOG template

for each part, scale and orientation is learnt from manually labelled images (for

which the pose of the upper body is given). Separate templates are computed

for every part, scale and orientation in order to capture illumination e↵ects (and

folds in clothing).

Prior term p(L). This models the prior probability of configuration L, placing

plausible limits on the joint angles of the hands relative to the lower arms by en-

forcing the kinematic chain (in this method with manually specified constraints).

Computationally e�cient solution for the cost function. The total num-

ber of possible arm configurations of the above method is ⇡ 1013, which is infeasi-

ble to search by brute-force. To e�ciently solve the cost function, [Buehler et al.,

2011] proposed a sampling-based method where the arms are fitted sequentially.

To further cut down the computational cost, this sampling-based approach is

used only to identify frames where the pose can be estimated with high confi-

dence (which the authors call ‘distinctive frames’). The arm configurations in all

non-distinctive frames are found by tracking over time (by adding a tracking term

to the global cost function above), which is faster than using a sampling-based

approach for each frame.
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2.1.7 Case study 2: [Charles et al., 2013a]

We next review the random forest pose estimator from [Charles et al., 2013a]. We

describe this random forest method here in detail, as it will be used in Chapter 4

in conjunction with a co-segmentation method to accurately estimate the pose in

monocular RGB videos.

Overview. The method tackles pose estimation by treating it as a classification

problem for each pixel in the input image. Each pixel in the image is classified

into a discrete class label l 2 {li} (one for each body joint) in a sliding-window

fashion.

The classification is performed by a random forest (an ensemble of T decision

trees), where each tree t consists of split nodes which perform a true or false test

on incoming pixels (the node tests are discussed below). As in any decision tree,

at training and test time, pixels are recursively pushed down either the left or

right branch depending upon the outcome of this test. When a pixel reaches a

leaf at the bottom of the tree, a probability distribution pt(l|Wq, I) (learnt from

training data as described below) assigns the pixel a probability for class label l

(I is the input image, and Wq is the set of pixels in the window surrounding pixel

q). The final conditional distribution p(l|Wq, I) is obtained by taking an average

across all trees in the forest.

Node tests. Inspired by [Shotton et al., 2008, 2011], this work uses very ef-

ficient test functions f(.) at the nodes of the trees, which only compare pairs
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of pixel values. A pixel q is represented by xq = (x1
q, x

2
q, x

3
q) where x

1
q, x

2
q, x

3
q

could be RGB values at pixel q; or skin, torso and background colour posterior

values [Benfold and Reid, 2008]. The function f operates on a pair of pixels (a, b)

from within the window Wq, and produces a scalar value which is compared to a

learnt threshold value �. Similar to [Shotton et al., 2008], these tests are restricted

to take one of four forms: f(a) = x

c
a, or f(a, b) = x

c
a � x

c
b, or f(a, b) = x

c
a + x

c
b,

or f(a, b) = |xc
a � x

c
b|, where c 2 {1, 2, 3} indexes the colour channel.

Learning split node parameters. Each tree in the forest is trained recur-

sively by randomly sampling a diverse set of points Sn (the ‘dataset’) for each

node n from the training frames. The split function and threshold at each node

are selected to split the data reaching that node as ‘purely’ as possible as mea-

sured using Gini impurity:

i(Sn) = 1�
X

l

p(l|Sn)
2 (2.3)

where p(l|Sn) is a histogram of the dataset Sn over possible labels l at node n.

The parameters of split nodes are learnt by trying all possible test functions

f(.) and colour posterior types c for a randomly sampled o↵set pixel (a, b) inside

the window Wq. This process is repeated k times (we use k = 200), and the set

of parameters which maximises the drop in impurity is selected as the winning

decision function. This process is repeated recursively for all nodes.

A node is declared a leaf node (i.e. not split further) when: (i) the maximum
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depth limit D of the tree (where D is manually specified at training time) has

been reached; or (ii) the node is ‘pure’ (i.e. all points reaching the node have the

same class label). Finally, a per-leaf probability distribution pt(l|Wq) is stored at

the leaf node (represented as a normalised histogram over the labels of all data

points reaching the node).

Test-time pose estimation. At testing time, a location for the joint l is found

by using the output p(l|Wq, I) of the random forest, and estimating the density of

joint proposals using a Parzen-window kernel density estimator with a Gaussian

kernel. The position of maximum density is used as the joint estimate.

2.2 Gesture Recognition withWeak Supervision

This section reviews the existing methods for gesture recognition that are relevant

to this thesis. Comprehensive reviews of gesture recognition in general are given

in [Mitra and Acharya, 2007, Rautaray and Agrawal, 2015].

2.2.1 Overview

Gesture recognition has recently received significant attention thanks to Kinect,

which showed that gesture recognition can be used as an e↵ective user interface

for games.

E↵ective gesture recognition requires some form of training data to learn the

gestures from. The majority of approaches to gesture recognition so far have relied
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on strongly supervised learning [Dreuw et al., 2006, Ong and Ranganath, 2005,

Starner et al., 1998], where a large quantity of training data is ground truthed

(typically to collect such a dataset, a person performs a sequence of gestures in

laboratory conditions, followed by manual labelling of the gestures). This kind

of approach is inherently expensive and does not scale to large, evolving gesture

languages with high levels of variation. This has led to increased interest in two

alternative approaches:

One-shot supervision. Several recent works have attempted to learn gestures

at the other extreme – from a single training example per gesture (one-shot

learning) [Guyon et al., 2013, Ke et al., 2007]. These methods generally use

a combination of temporal segmentation (normally dynamic time warping) plus

some spatiotemporal features (extracted either from the skeleton or depth frames)

to find the closest matching sample in the training set. However, given the vast

variability in how gestures are performed, and the variation in people and camera

viewpoints, learning accurate, generalisable models with so little supervision is

somewhat challenging, to say the least.

Weak supervision. Another avenue of work has explored learning gestures

from practically infinite sources of data with weak supervision [Buehler et al.,

2009, Cooper and Bowden, 2009, Kelly et al., 2011, Nayak et al., 2012], e.g . TV

broadcasts with aligned subtitles (or similarly actions from movies with aligned

transcripts [Bojanowski et al., 2013, Duchenne et al., 2009]). These works typ-

ically employ a multiple instance learning-based approach, where temporal se-
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quences with a weak label are grouped together, and the sub-sequences that

occur most frequently in the positively labelled ‘bags’ (and most infrequently in

the negatively labelled bags) are selected. While these works have shown promise,

they have run into some limitations of the weak supervision available for gestures

today: it is so weak and noisy that it is very di�cult to learn from it alone.

In this section, we first briefly discuss the traditional gesture recognition ap-

proaches that employ strong supervision. We then discuss in detail methods that

exploit weak supervision, as these are particularly relevant to this thesis. Finally,

we discuss approaches specific to recognising sign language gestures, which di↵er

from most other gesture languages in that it usesmultiple modalities (face, hand

movement, gesture order etc.) to convey gestures.

2.2.2 Learning gestures from strong supervision

The majority of research on gesture recognition to date relies on manually anno-

tated (strongly supervised) datasets. While this learning approach may not be

scalable, many of the gesture matching methods discussed in this section can also

be used in a weakly supervised setting.

Early work. In the earliest gesture recognition methods, heavy constraints

were typically imposed, such as wearing motion sensors [Chunli et al., 2002] or

using a uniform background and/or wearing coloured gloves. Hidden Markov

Models (HMMs) [Chunli et al., 2002, Starner et al., 1998, Yamato et al., 1992]

were particularly popular. [Starner and Pentland, 1997, Starner et al., 1998]
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showcased a system for real-time sign language recognition from RGB (with hand

tracking) using a wearable computer, which inspired many other papers tackling

gesture recognition with HMMs [Campbell et al., 1996, Chunli et al., 2002, Liang

and Ouhyoung, 1998, Vogler and Metaxas, 1998, 2004]. [Bowden et al., 2004,

Kadir et al., 2004] experimented on colour glove data, and showed that it is

possible to learn an accurate person-specific gesture recognition model from a

very small amount of training data.

One-shot learning. In one-shot learning, initial work focused on nearest neigh-

bour matching by shape [Ke et al., 2007]. [Farhadi et al., 2007] showed that one

can learn American sign language gestures from an avatar dictionary (with a

single example for each gesture), and generalise to realistic sign language videos

using a transfer learning approach. Work on the ChaLearn one-shot gesture learn-

ing challenges [Guyon et al., 2012, 2013] recently spurred a burst of interest into

learning gestures from one-shot learning. The best-performing methods [Fanello

et al., 2013, Krishnan and Sarkar, 2013, Wan et al., 2013] generally use dynamic

time warping to match to the nearest gesture in the training dataset, either based

on pose estimation output, or a (spatial or spatiotemporal) descriptor (normally

HOG or optical flow) of the raw RGB / depth frames.

Depth data and Kinect. Depth data, particularly from Kinect, has recently

spurred increased interest in gesture recognition. The benefits of using data

from Kinect are twofold: first, the depth data helps (somewhat) in detecting

occluding limbs and recovering the 3D information in gestures; second, it comes
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with (somewhat noisy) pose predictions.

Several methods using Kinect data have emerged (in addition to ChaLearn

methods above), including: (i) [Ershaed et al., 2011] recognised isolated Arabic

sign language signs; (ii) [Zafrulla et al., 2011] investigated the use of Kinect for

sign language recognition in educational games for deaf children (and proposed

a sign language-based game called ‘CopyCat’ that matches based on Kinect-

provided joints); (iii) [Pugeault and Bowden, 2011] used Kinect for tracking the

hand positions and doing real-time sign language fingerspelling recognition by

matching hand shape features with a random forest; (iv) [Cooper et al., 2012]

presented two new Kinect datasets for Greek Sign Language and German Sign

Language and used them to learn gesture sub-units; and (v) [Chai et al., 2013,

Lin et al., 2014] proposed a method to translate Chinese sign language to text

in real-time (which received world-wide press recently). The method matches 3D

hand trajectories from Kinect and combines these with a simple sign language

language model. While impressive performance was reported (rank-1 83.51%

for 239 words), it is unclear whether their method required training on labelled

gesture examples for the test signer, which would make the method less useful in

practice.

We note that this thesis focuses on learning gestures from weakly supervised

data in TV broadcasts (which are pure RGB – no depth), so we do not use depth

data in this thesis. However, we have an ongoing project where we record Kinect

data in TV sign language studios which we discuss in more detail in the future

work section of Chapter 9.
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2.2.3 Learning gestures from weak supervision

In contrast to the strongly supervised approaches, in a weakly supervised learning,

no manual annotation is performed – instead, existing weak supervision is used.

The most prominent example of using weak supervision for gesture recognition

is subtitled sign language TV broadcasts. Here, the idea is that words are likely to

occur in the subtitles sometime near the time that they are signed, so the subtitles

can be used as weak supervision to learn the signs. However, the supervision is

both weak and noisy: it is weak because of the bad temporal alignment between

the subtitles and the signing, and is noisy because the sign might not occur when

the subtitle does.

The most cited works using this approach are [Buehler et al., 2009] and [Cooper

and Bowden, 2009], who both automatically extracted sign-video pairs from TV

broadcasts. We next review these two methods:

[Buehler et al., 2009]. This work used 10.5 hours of signing sequences with

subtitles, recorded from TV broadcasts. Given a subtitle word, the subtitle su-

pervision is used to split the data into ‘positive’ sequences (in which a word is

likely to occur) and ‘negative’ sequences (in which the word is known to be un-

likely to occur). A distance function between two temporal windows is defined

(based on hand position, hand shape and hand orientation, obtained from the

pose estimator in Section 2.1.6), and is used within a multiple instance learning

method to find the signs that occur most frequently within the positive sequences

(but do not occur in the negative sequences). In later work, these automatically
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extracted signs were used to train a signer-independent sign classifier [Buehler

et al., 2010]. While the method performs well, it relies on performing a compu-

tationally expensive brute force search over all temporal windows. In Chapter 7,

we address this by using mouth motion to cut down the search space.

[Cooper and Bowden, 2009]. This work used a temporally constrained adap-

tation of apriori data mining on hand and head positions (again obtained with

the method in Section 2.1.6) to learn signs. Similar sections of each video block

are mined, and the responses are used to show where a sign is likely to be located.

This method is very similar in spirit to [Buehler et al., 2009] (given a word, using

positive and negative sequences to find the most likely sign), but di↵ers in three

main aspects: (i) apriori mining is used instead of MIL; (ii) no appearance-based

features (such as hand shape) are employed; and (iii) experiments are only con-

ducted on a 30min long video of a single signer (vs 10.5h of video for 3 signers in

[Buehler et al., 2008]).

Other works using weak supervision for learning gestures include:

[Farhadi and Forsyth, 2006]. This work considered the problem of aligning

an American Sign Language sign with an English text subtitle, but under much

stronger supervisory conditions than the above two approaches. This work used

one 1 hour long sign language-interpreted children’s film consisting of a series of

blocks of video (where spoken narration, signing and subtitles occur), interspersed

with video where there is neither dialogue nor narration. This means that the

video blocks and subtitle blocks are already very closely aligned (unlike in TV
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broadcasts, where the signing and subtitles are much more out of sync), which

enabled the use of a much simpler method than the above two methods. After

identifying hand positions with a skin detector they describe the frames with

SIFT features centred on head and hands. Finally, HMMs are used with these

features to estimate the start and end positions of each sign.

[Kelly et al., 2011]. This work built upon the ideas of [Buehler et al., 2009,

Cooper and Bowden, 2009]. However, the data di↵ers slightly. Instead of using

TV broadcasts, this work recorded a dataset of two Irish sign language signers

in a studio, and interpreted their signing into 844 text sentences. Similar to TV

broadcasts, the supervision here is weak: the input is a set of video sequences and

their ‘subtitles’ (from interpreters). The task was to learn the signs automatically

(without temporal information w.r.t. when the sign occurs). However, in contrast

to TV broadcasts, this data is both less weak and less noisy (because the temporal

correspondence between the signed and ‘subtitles’ are tighter – more like that in

[Farhadi and Forsyth, 2006]). Similar to [Buehler et al., 2009], they used this weak

supervision to automatically extract signs using multiple instance learning. Given

the extracted signs, they train an HMM based on geometric features computed

from hand positions, which they use to recognise signs in continuous signing video

(in a signer-dependent setting).

[Nayak et al., 2012]. This work used a Bayesian framework for extracting the

common subsequences for a set of weakly labelled sign language sequences. The

dataset they use is similar to that in [Kelly et al., 2011]: a set of videos with



2.2. Gesture Recognition with Weak Supervision 45

sentence-level translations to English (here with 155 signs recorded for a single

person). The automatically extracted examples are then used to localise signs in

test sequences (again in a signer-dependent setting).

2.2.4 Sign language: beyond hand gestures

In this short section, we give a brief overview of work on other modalities (beyond

the hand gesture-based works discussed above) that are involved in sign language

recognition. A comprehensive review of sign language recognition methods is

provided by [Ong and Ranganath, 2005].

Non-manual features for sign language recognition. In addition to man-

ual features (hand movement), sign language also consists of non-manual features:

lip patterns, facial expressions and body pose.

Lip patterns are used by most signers to mouth the word they are signing the

same time they perform the manual gesture. These lip patterns resolve ambigu-

ities in some signs that can be disambiguated solely by the lip shape (e.g . uncle

and aunt in BSL). Lip reading is already an established field with multiple com-

puter vision [Ong and Bowden, 2008, Zhou et al., 2011]. However, until the work

in this thesis, no work had explored using lip patterns for sign language recogni-

tion (now, inspired by the work in this thesis,[Koller et al., 2014] and others have

explored this further).

Facial expressions have seen the most rapid increase in use in sign language

recognition [Aran et al., 2009, Vogler and Goldenstein, 2005]. They can be used
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to modify any sign language word – they are essentially the tone of voice for

sign language. [von Agris et al., 2008] showed that roughly 20% of the signs in

their dataset can be recognised purely from facial expressions. [Nguyen and Ran-

ganath, 2008] recognised four commonly occurring facial expressions (grammati-

cal markers) in isolated American Sign Language signs, and in later work [Nguyen

and Ranganath, 2010] extended their method to cope with continuous facial ges-

tures a↵ected by coarticulation.

In this thesis, the use of non-manual features is explored in Chapter 7, where

lip patterns are used to narrow down the search space when learning signs from

weak supervision.



Chapter 3

Datasets

In this chapter we describe the datasets used in this work and how they have

been generated.

We first describe the main datasets used for pose estimation, and then describe

the datasets used for learning gestures from weak supervision.

3.1 Pose Estimation Datasets

This section introduces three pose estimation datasets – BBC Pose, its extended

version (Extended BBC Pose), and Poses in the Wild. These three datasets are

used in Part I of this thesis. Table 3.1 shows a summary of these datasets.

47
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BBC Pose Extended BBC Pose Poses in the Wild

Total videos 20 92 30
Train videos 10 82 (10 same) -
Val videos 5 5 (same) -
Test videos 5 5 (same) 30
People 9 ⇡40 -
Frames 1.5M 7M 830
Train labels Buehler et al. Buehler et al. (10) + Chapter 4 (72) -
Val labels 1,000 manual GT 1,000 manual GT (same) -
Test labels 1,000 manual GT 1,000 manual GT (same) 830 manual GT

Table 3.1: Summary of statistics for pose estimation datasets.

3.1.1 BBC Pose dataset

This dataset consists of 20 TV broadcast videos overlaid with a person interpret-

ing what is being spoken into sign language. The videos, each between 0.5h–1h

in length (45K–90K frames), contain content from a variety of TV programmes.

All videos have pose annotations from a semi-automatic pose estimator [Buehler

et al., 2011]. Figure 3.1 shows example frames from one video, and Figure 3.2

shows an example frame from each of the videos in this dataset.

Semi-automatic generation of training labels. All frames of the videos

have been automatically assigned joint locations (which we use as ground truth

for training) using a semi-automatic and slow (but reliable) tracker by [Buehler

et al., 2011] (described in more detail in Section 2.1.6). It is semi-automatic

because it requires manual labelling of 64 frames per video (which is around

three hours of manual user input per one hour of TV footage). It is slow because

it is based on an expensive pictorial structure model (which requires hundreds of

seconds computation per frame).



3.1. Pose Estimation Datasets 49

Figure 3.1: Example frames from one video in the BBC Pose dataset.

Split into training/validation/testing sets. The 20 videos are split into 3

disjoint sets: 10 videos for training, 5 for validation and 5 for testing (as shown

in Figure 3.2). The dataset contains 9 signers. Of the 9 signers, the training and

validation sets contain 5, and the testing set contains another 4. Splitting the

data this way maintains enough diversity for training but also ensures fairness

as the testing set contains completely di↵erent signers than the training and

validation sets.

Sampling training/validation/testing data. The methods are tested and

validated on frames sampled from each video. 200 frames containing a diverse

range of poses are sampled by clustering the signers’ poses (with k-means, K =

100) with data provided by Buehler et al .’s tracker, and uniformly sampling

frames across clusters from each of the 5+5 validation/test videos (2,000 frames

in total). This ensures the accuracy of joint estimates are not biased towards poses

which occur more frequently, e.g . “resting” poses between signs. In Chapters 4

and 5, the methods are furthermore trained on sampled poses, which increases

the diversity of poses in the training set.
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Training set Validation set Testing set

Figure 3.2: Visualisation of the BBC Pose dataset, showing one exam-
ple frame per video. Videos are split into training, validation and testing sets.
Variation in terms of signer identity, clothing and background video content is
ensured in the training set by using di↵erent videos and only duplicating signers
if they are wearing di↵erent clothing. The testing set contains completely di↵er-
ent signers than those present in the training or validation sets. A scale bar is
provided in the top left hand corner image to compare pixel distance with signer
size.
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Ground truth labelling. For the validation and test videos, the 200 sampled

frames (with diverse poses) from each video are manually annotated with joint

locations.

Evaluation measure. In all pose estimation experiments we evaluate the per-

formance by comparing estimated joints against frames with manual ground

truth. An estimated joint is deemed correctly located if it is within a set distance

of d pixels from a marked joint centre. Accuracy is measured as the percent-

age of correctly estimated joints. A scale superimposed on the top left frame in

Figure 3.2 shows how pixel distance relates to signer size.

Pose visualisation. Figure 3.3 shows a scatter plot of stickmen [Tran and

Forsyth, 2010], illustrating upper and lower arm placements for every frame in

the training, validation and testing sets (poses are normalised to the mid-point

between shoulders). Poses in testing frames cover a similar space of poses as in

training frames.

3.1.2 Extended BBC Pose dataset

We also generate an extended version of the above BBC Pose dataset, with an

order of magnitude more training data. This dataset contains all videos from the

BBC Pose dataset plus 72 additional training videos. Combined with the original

BBC TV dataset, the dataset contains 92 videos (82 training, 5 validation and

5 testing), i.e. around 7 million frames. The frames of the new 72 videos are
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Upper arms Lower arms Upper arms Lower arms Upper arms Lower arms

Training set Validation set Testing set
Buehler et al . Buehler et al . Buehler et al .

Figure 3.3: Scatter plots of stickmen in the BBC Pose dataset, showing
plots of upper and lower arm placements for every frame in the training, valida-
tion and testing sets. Poses are normalised to the mid-point between shoulders.
Head centre points are rendered as red dots; right/left upper arms are shown as
green and blue lines respectively; and right/left lower arms are shown as yellow
and black lines respectively. Poses are not scale-normalised, meaning scale and
location variation is directly observable between sets.

automatically assigned joint locations (used as ground truth for training) with

the tracker of Chapter 4. In practice, these ‘ground truth’ joint locations are

slightly noisier than those in the original BBC Pose dataset (which were obtained

using the slow, semi-automatic tracker of [Buehler et al., 2011]).

3.1.3 Poses in the Wild dataset

The Poses in the Wild dataset [Cherian et al., 2014] contains 30 sequences (total

830 frames) extracted from Hollywood movies. The frames are annotated with

upper-body poses. As shown in Figure 3.4, it contains realistic poses in indoor and

outdoor scenes, with background clutter, severe camera motion and occlusions.

For training, we follow [Cherian et al., 2014] and use all the images annotated

with upper-body parts (about 4.5K) in the FLIC dataset [Sapp and Taskar, 2013].
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Figure 3.4: Example frames from Poses in the Wild.

3.2 Gesture and Sign Language Recognition Datasets

This section introduces the datasets used for gesture and sign language recogni-

tion – the Sign Extraction dataset, the Extended Sign Extraction dataset, two

BSL dictionaries (BSL dictionary 1 and BSL dictionary 2), and ChaLearn. These

are used in Part II of this thesis. Table 3.2 shows a summary of these datasets.

3.2.1 Sign Extraction dataset

The sign extraction dataset consists of 35 high-definition (HD) TV broadcast

videos, with 17 di↵erent signers, and in total 30 hours of data. Each video

contains between 40K and 85K frames of sign-interpreted video content from

a variety of BBC TV programmes. All frames of the videos are automatically

assigned segmentations, joint labels and mouthing scores using the methods de-

scribed in Chapter 4 and Chapter 7. Samples frames of this dataset are shown
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Sign Extraction Ext Sign Extraction Dict 1 Dict 2 ChaLearn

Videos 35 130 (95 new) 3970 3409 955
Hours of video 30 155 2.5 3 23
Signers 17 ⇡50 1 6 27
Supervision Weak (subtitles) Weak (subtitles) Strong Strong Strong
Manual GT 41 words 41 words (same) N/A N/A N/A

Table 3.2: Summary of statistics for gesture recognition datasets. ‘Ext’
stands for Extended, ‘Dict’ for Dictionary, and ‘GT’ for ground truth.

in Figure 3.5.

Supervision (weak and noisy). We generate supervision for this dataset

from the TV broadcast subtitles (which show what words are spoken in the TV

broadcast). However, this supervision is both a weak and noisy signal for when

(and whether) a sign occurs in the TV broadcast. It is weak as the subtitles are

not temporally aligned with the signs – a sign (typically 8–15 frames long) could

be anywhere in the overlapping subtitle video sequences (typically 400 frames).

It is noisy as the occurrence of a word in the subtitle does not always imply that

the word is signed (typically the word is signed only in 20–60% of the subtitle

sequences). A description of the data generation is given below.

Manual ground truth. A set of 41 subtitle words (animal, antique, asian,

bank, beacon, bear, beautiful, beef, bike, blood, buy, Chinese, chocolate, epigenome,

fake, feel, gram, heart, heat, industry, jelly, jewish, kill, market, milk, pay, rein-

deer, rugby, school, science, sell, simple, snow, song, sound, target, vision, war,

winter, work, year) is selected at random from the 1,000 most frequently occur-

ring words, and for these the ground truth sign temporal windows are annotated.

Table 3.3 shows the number of ‘positive’ subtitle sequences for each word, and
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Figure 3.5: Sample frames from the Sign Extraction dataset.

the actual number of occurrences of the signs corresponding to the subtitle word.

Data generation. The subtitles are first stemmed, and stop words are re-

moved. Then, given a word, the subtitles define a set of subtitle sequences in

which the word occurs (8–40 sequences depending on how many times the word

occurs), each around 15s (approx 400 frames) long. These subtitle sequences are

used as the weak supervision.

3.2.2 Extended Sign Extraction dataset

We extend the Sign Extraction dataset with 135 hours of additional data, yield-

ing a total of 155 hours of TV broadcasts. This dataset is otherwise like the

Sign Extraction dataset (same weak supervision and data preprocessing), Upper
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Sign #pos #GT
animal 12 9
antique 15 8
asian 11 9
bank 21 10
beacon 28 21
bear 14 10
beautiful 12 5
beef 15 8
bike 15 6
blood 15 4
buy 13 3
Chinese 33 11
chocolate 20 6
epigenome 20 13
fake 14 11
feel 12 8
gram 25 12
heart 14 5
heat 15 5
industry 19 9
jelly 11 1

Sign #pos #GT
jewish 27 14
kill 17 9
market 16 12
milk 10 6
pay 37 25
reindeer 15 9
rugby 11 7
school 13 5
science 18 10
sell 15 5
simple 12 10
snow 29 11
song 19 10
sound 26 5
target 23 4
vision 17 10
war 11 6
winter 23 12
work 22 14
year 32 8

Table 3.3: Ground truth for the Sign Extraction and Extended Sign
Extraction datasets. #pos is the number of positive subtitle sequences for the
word in the same row. #GT is the number of times the sign actually occurs in
the positive subtitle sequences. For this test set, the ratio between ground truth
occurrences and ‘positive’ subtitle sequences is 0.46 due to the noisy supervision.

body joint tracks are obtained automatically for this dataset using the method

described in Chapter 4.

3.2.3 Two BSL dictionary datasets

These datasets are video dictionaries for British Sign Language, which we call

‘Signstation’ (BSL dictionary 1) [Bristol Centre for Deaf Studies, 2014] and ‘Stan-

dard BSL dictionary’ (BSL dictionary 2) [BSL, 2005]. Samples frames from the

datasets are shown in Figure 3.6(a–b). The first contains 3,970 videos (total 2.5

hours), one for each word; and the second contains 3,409 videos (total 3 hours),
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(a) (b) (c)

Figure 3.6: Sample frames from three datasets with upper body pose
estimates overlaid. (a) BSL dictionary 1 (Signstation); (b) BSL dictionary 2
(Standard BSL dictionary); and (c) ChaLearn.

and covers 1,771 words (the majority of words signed in one or more regional

variation). BSL dictionary 1 contains a single signer, whereas BSL dictionary 2

contains multiple signers and multiple regional variations. There is no overlap of

signers between the two dictionaries. The two datasets contain di↵erent sets of

gestures, and intersect (i.e. have common words) only for a subset of these.

Data generation. In order to e↵ectively use this data in Chapter 8 (as training

and testing material for the same set of signs), it is first necessary to find the

‘pairs’ of gestures that are the same in the two dictionaries. This is made di�cult
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by the fact that the dictionaries contain di↵erent regional variations of the same

gestures (i.e., we cannot simply assume gestures with the same English word

label are the same). We therefore need to look for visual similarity as well as the

same English word label. We automatically find a subset of words pairs of the

same gesture performed the same way by computing a time-and-space aligned

distance (see Section 8.2.2) from upper body joint positions (obtained with the

method in Chapter 4) for all gesture pairs of the same word, selecting pairs with

distance below a threshold (set from a small manually labelled set of pairs). This

list of pairs is manually verified and any false matches (mainly due to incorrect

pose estimates) are filtered away. This results in 500 signs in common between

the two dictionaries.

3.2.4 ChaLearn gesture dataset

This dataset is the ChaLearn 2013 Multi-modal gesture dataset [Escalera et al.,

2013], which contains 23 hours of Kinect data of 27 persons performing 20 Italian

gestures. The data includes RGB, depth, foreground segmentations and Kinect

skeletons. The data is split into training, validation and testing sets, with in total

955 videos each lasting 1–2min and containing 8–20 non-continuous gestures.

The large variation in clothing across videos poses a challenging task for pose

estimation methods. Samples frames from this dataset are shown in Figure 3.6(c).
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Pose Estimation in Videos
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Chapter 4

Pose Estimation with Random

Forests

This chapter presents a pose estimator based on Random Forests that detects

joint positions (of hands, arms, shoulders and head) in RGB videos of more than

an hour in length, without any manual annotation.

We make contributions in three areas:

1. Foreground/background segmentation: We show that for sign language

TV broadcasts introduced in Section 3, the overlaid person can be separated

from the background TV broadcast using co-segmentation over all frames with a

layered model (Section 4.1).

2. Random forest regressor trained from semi-automatically labelled

data: Given the segmentation of the person, we show that the joint positions
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Segmentation Colour Model Random Forest RegressorInput

Figure 4.1: Random forest pose estimator overview. Arm and hand
joint positions are predicted by first segmenting the signer using a layered fore-
ground/background model, and then feeding the segmentation together with a
colour model into a random forest regressor.

(shoulders, elbows, wrists) can be predicted per-frame using a random forest re-

gressor, trained from an existing semi-automatic, but computationally expensive,

tracker, with no manual annotation (Section 4.2). This is similar in spirit to the

work by [Shotton et al., 2011] who also regress joint positions from (depth) images

– however, our approach works for RGB frames.

3. Pose evaluator: We introduce an evaluator to assess whether the predicted

joint positions are correct (Section 4.3).

The method is applied to the BBC Pose dataset described in Section 3.1.1 with

changing background, challenging imaging conditions, and for di↵erent signers.

This material is challenging to segment and determine human joint positions

on for a number of reasons (shown in Figure 1.3) that include: self-occlusion

of the signer, self-shadowing, motion blur due to the speed of the signing, and,

in particular, the changing background (since the signer is superimposed over a

moving video that frequently even contains other people.

This method outperforms the long term tracker [Buehler et al., 2011] (described
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in detail Chapter 2.1.6), does not require the manual annotation of that work,

and, after automatic initialisation, performs tracking in real-time. It also achieves

superior joint localisation results to those of [Yang and Ramanan, 2011], which

at the time the work was conducted was the state-of-the-art pose estimator.

Figure 4.1 shows an overview of the processing steps of this method. The input

frame is first segmented using a co-segmentation method; this is then turned into

a skin/torso/background colour posterior that is used for training a Random

Forest Regressor. We next discuss each of these steps in more detail.

4.1 Co-segmentation Algorithm

The goal of the co-segmentation algorithm is to segment the overlaid signer from

each frame of the broadcast. We exploit the fact that sign language broadcasts

consist of an explicit layered model as illustrated in Figure 4.2. In the spirit of

a generative model, i.e. one that generates the image by composition, we exploit

these inherent layers to provide an accurate segmentation of the signer. We

describe the three layers in the following paragraphs.

The static background layer (SBG) essentially consists of the framing (around

the actual/original broadcast) that has been added by the studio. As can be seen

in Figure 4.3, the static background is partially revealed and partially occluded

in each frame depending on the position of the signer. In a similar manner to

how a “clean plate” is constructed in film post-production, by looking through

the whole video and combining the partially revealed static backgrounds one can
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automatically, and almost fully, reconstruct the actual static background. This

layer can then be exploited when segmenting the signer.

The dynamic background layer (DBG) consists of a fixed rectangle, where the

original video is displayed, but is always partially covered by the signer and

changes from one frame to another. Its colour information, for the region where

it does not overlap a bounding box on the signer, is modelled separately and

forms a background distribution for a subsequent segmentation of the signer.

Finally, the foreground layer (FG) consists of the moving signer. By assum-

ing that the colour distribution of the signer remains constant we can build an

accurate foreground colour model for the whole video.

4.1.1 Algorithm overview

The input to the co-segmentation algorithm is a signed TV broadcast video, and

the output is a foreground segmentation, a quality score for the segmentation,

the head position and a colour model for the skin and torso. These will be used

in the random forest regressor.

The algorithm consists of two main steps:

1. Automatic initialisation (per image sequence). To exploit the inherent

layered model we initialise the algorithm by first determining the “clean plate”,

the dynamic rectangle and the foreground colour model. The details of how this

‘initialisation set’ is obtained are given in Section 4.1.2.
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FG DBG SBGFG DBG SBG

Figure 4.2: Generative layered model of each frame. The co-segmentation
algorithm separates the signer from any signed TV broadcast by building a layered
model consisting of a foreground (FG), dynamic background (DBG) and static
background (SBG).

2. Segmentation with a layered model and area constraints (per frame).

The initialisation set is then used to derive an accurate hard segmentation of the

signer in each frame. The clean plate and an area constraint are used to refine an

initial rough segmentation. The details of this method are given in Section 4.1.3.

4.1.2 Co-segmentation initialisation

In this section we describe how, given an input sign language video, we can obtain

the layers and their layout that are common to the video sequence (in order to

enable the subsequent per-frame segmentation). In particular, we wish to obtain

the regions shown in Figure 4.3, as well as the foreground colour distribution.

Our approach is to treat each frame as being generated from a number of layers,

as depicted in Figure 4.2, and to thereby solve for the layers and layout. This

problem di↵ers from typical applications of generative layered models for video,
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e.g . [Jojic and Frey, 2001, Kumar et al., 2008], since part of the background in

the video is always moving so we have a dynamic rather than fixed layer. The

creation of the layered model can be broken down into a step per layer:

Dynamic background. The aim in this step is to find the rectangle that con-

tains the dynamic background, and furthermore divide it into a region where the

signer may overlap, and another where the signer never reaches (see Figure 4.3c).

The latter region will be used to define a per-frame background colour. To this

end we find pixels that change intensity values for the majority of frames and

compute their rectangular bounding box, as shown in Figure 4.3b. This also

yields an area that is permanently static throughout the video (region A in the

same figure) that we use as a permanent BG clamping region. Regions A and

B in the same figure, which the signer never reaches, are defined relative to the

position of the signer’s face (the face detection method is described below).

Static background. The aim here is to find the static background, which can

be viewed as consisting of a ‘clean plate’ (term explained above). Once we have

this ‘clean plate’, we can then say with near-certainty whether a pixel belongs to

the FG or BG. The clean plate is obtained by roughly segmenting a random set of

frames into FG (signer) and BG using a graph cut algorithm. The regions used to

obtain the FG and BG distributions are illustrated in Figure 4.3c. In particular,

areas selected relative to the position of the signer’s face (face detection method

described below) are used to initialise the FG colour distribution. Given these

segmentations, the clean plate is obtained as a median over the BG.
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Figure 4.3: Co-segmentation method. (a) original frames; (b) dynamic layer
(rectangle spanned by the green dots) and the permanently fixed background
(in red) – the remaining green area behind the signer is the backdrop which is
not part of the fixed background; (c) rough segmentation with clamping regions
for running graph cut, where: A is the permanently fixed background; B is the
clamping region for the dynamic background; C is part of the foreground colour
model; and D is a hard foreground clamp (based on the position of the detected
face). (d) initial GrabCut segmentation that uses colour distributions of A, B for
background and C, D for foreground; (e) detail of the red rectangular region of
(d) showing the segmentation refinement stage (see text); and (f) segmentation
after clean plate and area size refinements.
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Foreground colour model. Here the aim is to obtain the signer colour distri-

bution (which is assumed approximately constant throughout the sequence). This

removes the need for finding accurate FG colour models for individual frames.

The colour distribution (which is represented by a histogram) is obtained from

the rough FG segmentations (see Figure 4.3c, computation described above) us-

ing frames where the colour histograms of the FG and dynamic background di↵er

the most. The high colour di↵erence increases the likelihood that there is a high

contrast between the FG and BG and thus that the segmentation is correct.

Face detection. Face detection is used for initialisation and frame-by-frame

segmentation. Detection of both frontal and profile view faces is achieved by

choosing between the face detector by [Zhu and Ramanan, 2012] (high recall for

frontal faces) and a face detector based on upper body detection [Ferrari et al.,

2008] (lower recall but detects profile views) according to their confidence values.

4.1.3 Per-frame segmentation with a layered model and

area constraints

Having finished the initialisation step we now have a layered model that can be

used to derive a segmentation of the signer. This layered model (the ‘initialisation

set’) is used to: (i) improve the segmentation by comparing each pixel against

the clean plate (to yield a near-certain segmentation label as the background is

known); and (ii) shrink the foreground segmentation size if it is too big (to avoid

catching e.g . skin regions in the background).
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The segmentation uses GrabCut [Rother et al., 2004], with the FG colour model

provided by the initialisation set and, as in [Ferrari et al., 2008], with the FG

clamped in areas based on the face location (Figure 4.3c). The BG colour dis-

tribution is known from the dynamic background. The segmentation is refined

twice: first by comparing pixels to the clean plate of the static background, and

then by shrinking the foreground size if it is much bigger than the average size.

The latter is done by adding a constant to the graph cut unary potentials of

the dynamic background (this increases the likelihood that a larger part of the

dynamic background is labelled as BG, hence reducing the size of the FG). This

addresses a common failure case where the dynamic background contains a colour

similar to the signer, which leads to the foreground region ‘catching’ part of the

dynamic background and becoming too large. In contrast, the foreground is sel-

dom too small thanks to good FG colour model estimates. Examples of fully

refined segmentations are shown in Figure 4.3e.

The segmentation still fails in certain di�cult cases, e.g . when the colours of

the FG and BG are very similar or when the face detector fails. We fix this by

computing a segmentation quality score as described in Section 4.3.

4.1.4 Colour posterior

At this stage we have a foreground segmentation that is rated by a segmentation

quality score. However, additional layout information is also available from the

the spatial position of the the skin and torso (i.e. non-skin) pixels. The posterior



4.1. Co-segmentation Algorithm 69

(a) Color model (b) Random forest (c) PDF of joints (d) Estimated joints

Figure 4.4: Estimating joint positions. (a) input colour model image; (b) ran-
dom forest classifies each pixel using a sliding window and learnt test functions;
(c) probability density function of each joint location, shown in di↵erent colours
per joint (more intense colour implies higher probability); (d) joint estimates,
shown as small circles linked by a skeleton.

probability of the skin and torso pixels is obtained from a colour model. Com-

puting the colour posteriors for skin and torso abstracts away from the original

colour, of the clothes for example, which varies between signers and is not directly

informative [Benfold and Reid, 2008, Jojic and Caspi, 2004].

In a similar manner to the construction of the initialisation set for the layers, the

skin colour distribution is obtained from a patch of the face over several frames,

and the torso colour distribution is obtained from a set of FG segmentations

from which the colours of the face/skin are automatically removed. These colour

distributions are then used to obtain a pixel-wise posterior for the skin and torso

in each frame.

4.1.5 Technical details

Here we provide the additional details for the segmentation method. The dynamic

background is determined using a subset of 300 uniformly sampled frames for each

video. Earth Mover’s Distance (EMD) is used to compare colour histograms for
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extracting the foreground colour model and for generating colour posteriors (to

remove skin regions from the FG segmentations). Faces are detected in the

right half of the image for computational e�ciency. The maximum foreground

segmentation size is set to a standard deviation above the median segmentation

size over all frames in a video.

4.1.6 Related work for co-segmentation

Co-segmentation methods [Hochbaum and Singh, 2009, Joulin et al., 2010, Rother

et al., 2006] consider sets of images where the appearance of foreground and/or

background share some similarities, and exploit these similarities to obtain ac-

curate foreground-background segmentations. [Rother et al., 2006] originally

introduced the problem of co-segmenting image pairs. Their approach was to

minimise an energy function with an additional histogram matching term that

forces foreground histograms of images to be similar. [Chai et al., 2011] pro-

posed co-segmentation algorithms that work on each image category separately,

and embed class-discriminative information into the co-segmentation process. In

our case our co-segmentation algorithm automatically separates signers from any

signed TV broadcast by building a layered model [Jojic and Frey, 2001, Kumar

et al., 2008, Szeliski et al., 2000].
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4.2 Random Forest Pose Estimator

In this section we describe how the foreground segmentation (from co-segmentation)

and the skin and torso colour posterior (from the colour model) are fed into a

Random Forest for training (and testing) and pose estimator.

We cast the task of localising upper body arm joints and head position as

a multi-class classification problem, classifying each image pixel into one of 8

categories l 2 {head centre, left/right wrist, left/right elbow, left/right shoulder,

other} using a random forest classifier in a sliding-window fashion. We also refer

to the ‘head centre’ as a joint (see Figure 4.4d). As shown in Figure 4.4a, the input

to the random forest comes from the colour model image after co-segmentation.

The joints are localised on a per-frame basis.

The random forest classifier uses simple features to make classification ex-

tremely computationally e�cient. Classification to a discrete class label l 2 {li},

for each pixel q across the image, is performed in a sliding-window fashion. The

method follows that of [Charles et al., 2013a], described in Section 2.1.7.

At testing time, a location for the joint l is found by using the output of the ran-

dom forest and estimating the density of joint proposals using a Parzen-window

kernel density estimator with a Gaussian kernel. The position of maximum den-

sity is used as the joint estimate.
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4.3 Pose Evaluator

At this point our joint predictor outputs joint estimates for each frame of the

video. However, the predictions are provided ‘as is’, without an indication of

whether they are correct or not. Therefore, in the spirit of [Jammalamadaka

et al., 2012] we train an evaluator that indicates whether a pose is correct or not.

We accomplish this by analysing the failure cases and, accordingly, developing

scores for predicting when the failures occur. At testing time frames classified as

failures are discarded.

Figure 4.5 shows the main causes of failure: frames where the segmentation is

faulty (⇡ 80% of errors), and where the left and right hand are confused (⇡ 5% of

errors). The approach here will be to develop separate methods for detecting each

of these failures. An SVM is trained to predict failed frames using the output

of these methods as a feature vector. The classifier yields a simple lightweight

evaluator that predicts whether the pose is correct or incorrect.

The features for the classifier are discussed in Sections 4.3.1 and 4.3.2, and

details on the SVM that combines the features are given in Section 4.3.3.

4.3.1 Feature 1: Segmentation scores

The segmentations occasionally either over-segment or under-segment the fore-

ground, due to a similar foreground and background or face detection failures.

This in turn results in incorrect pose estimates.

One way to detect failures is to compare the segmentations to ground truth
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(a) (b)

Figure 4.5: Typical pose estimation errors. (a) frames with segmentation
failures, with the failed segmentation (left) and failed pose estimate (middle).
(b) frames where the left and right hands are confused. Poses estimates are
illustrated with a colour coded skeleton.
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(a) (b)

Figure 4.6: Segmentation score for evaluator. (a) the silhouette (red boxes)
rendered based on estimated joint positions. (b) the segmentation (black), ren-
dered silhouette (yellow) and their overlap (red) which is used as a segmentation
score.

segmentation masks – however, these are only available for a limited number of

test frames. Instead, we exploit our joint estimates to render a partial silhouette

(Figure 4.6a). This is done by rendering a rectangular binary mask for each

limb given joint locations. Rectangles covering the head and arms are added

according to the joint positions, and a rectangle covering the torso is added

based on the shoulder positions. The partial silhouette can then be compared to

the segmentation from the co-segmentation algorithm as shown in Figure 4.6b,

resulting in scores such as those in Figure 4.7.

Several segmentation scores are computed based on the output of this render-

ing. First, we compute a standard overlap score o = T
T

A
T
S

A for comparing the two

silhouettes, where T is rendered partial silhouette and A is the mask generated

by the co-segmentation algorithm (see Figure 4.8). Second, a Chamfer distance

between the silhouettes is also computed, yielding a measure of the similarity of

the shapes of the silhouettes. Third, statistics based on the size of the segmenta-
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Figure 4.7: Examples of frames with di↵erent segmentation overlap
scores. The masks show the segmentation (black), rendered silhouette (yellow)
and their intersection (red).

tion are computed. These are absolute mask size kAk, di↵erence between mask

size and median mask size over all frames kMk: � = kAk�kMk
kMk , � re-computed

with temporally local medians, and di↵erences between di↵erent �’s.

These scores form the first part of the feature vector for the evaluator classifier.

4.3.2 Feature 2: Mixed hands

Another common error case is when the left and right hand are confused with

each other, i.e. the left hand is connected to the right elbow and/or vice versa. In

order to catch these failures, we train a classifier with local Histogram of Oriented

Gradients (HOG) [Dalal and Triggs, 2005] features to detect correct and incorrect

assignments. The tracking output from [Buehler et al., 2011] is used as manual
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HOG

success

fail

Cluster
based on arm angle & position

SVM
for each cluster

...

Segmented input frames

Figure 4.8: Training the detector for mixed hand predictions. The eval-
uator is trained on HOG feature vectors placed in the middle of the correct and
incorrect positions of the lower arm. Feature vectors are clustered into separate
SVMs based on the hand-elbow angle and hand position.

ground truth. The examples are clustered with K-means according to the hand-

elbow angle and hand position into 15 clusters. One SVM is trained for each

cluster as shown in Figure 4.8 (similar to poselets [Bourdev and Malik, 2009]).

The HOG is computed in the middle of the lower arm. At test time, as shown

in Figure 4.9, predicted joints are assigned to the nearest cluster centroid based

on hand-elbow angle and hand position. The SVM for this cluster is evaluated

and the output score forms the second part of the feature vector for the evaluator

classifier.

4.3.3 Evaluator

The above two features (segmentation scores and mixed hands) are then used

to train an evaluator, which classifies the body pose estimate of each frame as

either success or failure. To this end we train an SVM with a Chi-squared kernel

based on the the above two feature sets (9 scores for segmentation – 1 overlap

score, 1 Chamfer score and 7 size statistics; and 1 score from the mixed hand
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HOG

Select cluster
based on arm angle & position

SVM
for that cluster

Segmented input frames

Output
Success / fail

+ score

Figure 4.9: Testing the hand mixup detector. The SVM trained on a cluster
whose centroid best represents the predicted joints is chosen to evaluate the HOG
feature vector placed in the middle of the hand and elbow positions. This SVM
outputs a failure score which the evaluator exploits as a feature for predicting
whether the pose estimate is successful or failed.

classifier). An increase in accuracy was observed after adding each feature. The

joint tracking output from [Buehler et al., 2011] is used to automatically label

the training set. This yields a simple lightweight evaluator (with a feature vector

of dimension 10) that predicts whether the pose is correct or incorrect.

4.4 Experiments

In this section, the performance of the co-segmentation algorithm, joint position

estimator and pose evaluator is first assessed (Sections 4.4.1–4.4.3), and then the

computation time of the methods is discussed (Section 4.4.4).

The experiments are performed using the BBC Pose train/validation/test dataset

and evaluation measures described in Chapter 3.1.1.
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4.4.1 Co-segmentation

The co-segmentation algorithm is evaluated in two experiments. The first exper-

iment uses ground truth segmentation masks to evaluate the quality of segmen-

tations. The second experiment uses silhouettes rendered based on ground truth

joint locations as shown in Figure 4.6.

Experiment 1: Overlap of foreground segmentation with ground truth

In this experiment the segmentation masks are compared against manual fore-

ground segmentation ground truth. This ground truth consists of manually la-

belled foreground segmentation trimaps for 20 frames for each of the five test

signers (100 frames in total). The frames are sampled uniformly from di↵erent

pose clusters (as described in Chapter 3). The overlap score from Section 4.3.1 is

evaluated separately for each test signer. The mean overlap scores and standard

deviations are given in Figure 4.10. The results show that the segmentations

are quite tight, but with some variation across di↵erent test videos (e.g. the

segmentations for Signer 2 and 3 are somewhat poorer).

Experiment 2: Overlap of foreground segmentation with a larger num-

ber of automatically rendered silhouettes

In this experiment an overlap score is computed by rendering rectangles at the

manual ground truth joint positions as shown in Figure 4.6. This is done using

the frames in the test and validation sets that have manual ground truth joint
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Signer Overlap
score

Standard devi-
ation

1 0.962 0.049
2 0.959 0.072
3 0.947 0.043
4 0.960 0.025
5 0.965 0.043
Mean 0.959 0.047

(a)
(b) (c)

Figure 4.10: Co-segmentation evaluation using overlap score. (a) overlap
scores for each test signer; (b) example of the ground truth trimap (white is
background, grey is foreground and black is unknown); (c) segmentation (green)
evaluated against the ground truth (magenta & black).

Data subset Avg overlap score Standard deviation

Test set 0.8628 0.0503
Validation set 0.8542 0.0637

Table 4.1: Co-segmentation evaluation using overlap of segmentation
and rendered silhouette. Average overlap scores are shown for the validation
and test sets.

locations (see Section 3), and is used for evaluating the quality of segmentations

for the evaluator.

Table 4.1 shows the resulting segmentation overlap scores. A perfect overlap is

not expected since the rendered rectangles are only approximations to the true

ground truth segmentation. However, as demonstrated in Figure 4.7, the overlap

score still gives a useful indication of whether the segmentation is good or not.

Figure 4.11 shows the cumulative distribution function of the overlap scores

over the test and validation sets. It can be observed that the majority of scores

are in the range 0.85 – 0.95, with no scores below 0.4 or above 0.95, and a

small proportion of scores between 0.6 and 0.8. This demonstrates that the
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Figure 4.11: Cumulative distribution function of segmentation overlap
scores. The majority of scores are in the range 0.85 – 0.95 (high overlap).

segmentation quality score used for the evaluator is fairly accurate.

4.4.2 Random forest pose estimator

The pose estimation method is evaluated in three experiments:

1. Frame representation: This explores alternative inputs for the forest

and demonstrates the e↵ectiveness of using a segmented colour posterior image

(obtained through co-segmentation) over using other simple representations.

2. Increasing training data: This part evaluates the performance of the

random forest as the amount of training data is increased.

3. Random forest vs. state-of-the-art: This part pitches our joint esti-

mation method against Buehler et al .’s tracker, and the pose estimation method
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of [Yang and Ramanan, 2011] which uses a mixture of parts.

The experiments in this section were conducted by James Charles.

Experiment 1: Frame representation

This section investigates four alternative frame representations: (i) a raw colour

pixel representation in LAB (LAB); (ii) colour posterior on the whole image

(CP); (iii) signer silhouette (S); and (iv) segmented colour posterior (Seg+CP),

produced through co-segmentation (examples showing each type are shown in

Figure 4.12a).

The forests are evaluated using 5-fold cross validation on videos of 5 di↵erent

signers, where the random forests are trained on 4 videos and evaluated on a 5th

“held-out” video.

Figure 4.12 shows average joint estimation accuracy for the forests as the thresh-

old on allowed distance from manual ground truth is increased. It can be noticed

that using LAB does not generalise well, and performs the worst. On the other

hand, SEG+CP maintains best performance. Removing the background content

and using SEG+CP allows the forest to learn a more refined appearance of body

joints and boost detection accuracy by reducing the influence of noise. However,

the method is left at the mercy of the background removal procedure.
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(a) Frame representations
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(b) Pose estimation results

 

  

CP
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Seg+CP
LAB

Figure 4.12: Comparison of di↵erent input frame representations. (a) Ex-
ample frames showing di↵erent methods for representing a frame. (b) Average
accuracy of forests as allowed distance from ground truth is increased. Using
SEG+CP proves best.

Experiment 2: Increasing the amount of training data

This experiment tests the intuition that more training data will improve gener-

alisation of the forest and hence increase the accuracy of joint estimates.

Protocol. Multiple forests with the SEG+CP frame representation are trained

for samples of 2, 4, 6, 8 and 10 videos from the set of 10 training videos. Finally we

also train a forest with 15 videos using the testing and validation sets combined,

which which we are not able to tune parameters due to a limited number of

available videos so they are fixed at the optimal parameters found when training

with 10 videos. All forests are tested on 1,000 ground truth frames from videos

in the testing set.
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Figure 4.13: Forest performance with increasing amount of training data.
Results on validation and testing sets are shown.

Results. Figure 4.13a shows the average accuracy achieved by forests on the

validation set. For all joint types we observe a general increase in accuracy as

more training data is added. The same trend is observed when applying these

forests to unseen signers in the testing set as shown in Figure 4.13b. Of particular

interest is the drop in accuracy of the shoulder joints when going from 8 to 10

videos. We believe this is due to a particular video having noisy segmentations on

the signer’s left shoulder. It can also be noticed that elbows have higher accuracy

than wrists in the validation set, but vice versa on the testing set. This is due to

more segmentation errors at elbow locations in the testing videos.

Experiment 3: Random forest vs. state-of-the-art

In this experiment the random forest is compared to Buehler et al .’s tracker

(described in Section 2.1.6 and the deformable part based model by [Yang and
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Ramanan, 2011] (described in Section 2.1.3.

Protocol. The forest is trained on the full 15 video training set. Parameters

are optimised on the validation set: a tree depth of 32, window size of 71 and 8

trees is used.

The model by [Yang and Ramanan, 2011] is trained for two di↵erent types

of video input: (i) The original RGB input; and (ii) an RGB input with the

background content removed by setting it to black. For both types of input the

full 15 video dataset is used for training. From each training video, 100 diverse

training frames were sampled, totalling 1,500 frames. Model parameters were set

the same as those used for upper body pose estimation in [Yang and Ramanan,

2011]. Negative training images not containing people were taken from the INRIA

dataset.

Results. Figure 4.14 shows accuracy as the allowed distance from ground truth

is increased. For all joints but the head, the forest consistently performs better

than Buehler et al .’s tracker. For the wrists and shoulders, erroneous joint predic-

tions by the forest are further from the ground truth than erroneous predictions

from Buehler et al .’s tracker once joint predictions are at least ⇡ 10 pixels from

ground truth. This indicates that it is likely to be easier for a pose evaluator to

detect errors made by the forest. Interestingly, the model by [Yang and Ramanan,

2011] achieves best performance when using the original RGB video input (input

1) over using a background removed version (input 2). We suggest that this is

due to a poor representation of negative image patches in input 2 when using
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negative training images from the INRIA dataset. Overall, Yang & Ramanan’s

model is the least accurate over all joint types.

Qualitative results for the forest on an example 5 frames from the testing set

is shown in Figure 4.15.
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Figure 4.14: Comparison of joint tracking accuracy of random forest
against [Buehler et al., 2011] and [Yang and Ramanan, 2011]. Plots
show accuracy per joint type (averaged over left and right body parts) as allowed
distance from manual ground truth is increased.
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Figure 4.15: Qualitative pose estimation results. Left shows colour model
images, from which we obtain probability densities of joint locations shown on
top of the colour model edge image in centre. Di↵erent colours are used per
joint (higher intensity colour implies higher probability). Maximum probability
per joint is shown as grey crosses. Right shows a comparison of estimated joints
(filled in circles linked by a skeleton are) overlaid on faded original frame, with
ground truth joint locations (open circles).
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Figure 4.16: Pose evaluator classification performance. (a) ROC curve of
the evaluator. (b) Change in accuracy as a function of the percentage of frames
left after discarding frames that the evaluator detects as failures. For (b) the
accuracy threshold is set as 5 pixels from manual ground truth.

4.4.3 Pose evaluator

The pose evaluator is assessed here on the ability to label joint predictions per

frame as either success or fail. The quality of joint predictions on success frames

is also used as a measure of the evaluator’s performance.

Protocol. The evaluator is trained on the validation set and tested on the test

set shown in Figure 3.2. For training, the joint tracking output from [Buehler

et al., 2011] is used to automatically label poses for a set of training frames as

success or fail (based on whether they agree with the Random Forest tracking

output or not). For testing, the 1,000 frames with manual ground truth are used.
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Results: Choice of operating point. Figure 4.16a shows the ROC curve of

the evaluator when varying the operating point (e↵ectively changing the threshold

of the SVM classifier’s decision function). This operating point determines the

sensitivity at which the evaluator discards frames. The optimal operating point

occurs at a point on the curve which best trades o↵ false positives against true

positives, which is the point closest to the top left hand corner of the plot. To gain

further insight into the e↵ect of the operating point choice on joint estimates, we

plot this value against joint prediction accuracy in Figure 4.16b. This illustrates

the correlation between the operating point and percentage of frames that the

evaluator marks as successes (i.e. not failures). One can observe that when

keeping the top 10% frames, a 90% average accuracy could be attained. More

frames can be kept at the cost of loss in average accuracy. The bump at 0.8

suggests that at a particular SVM score, the pose evaluator begins to remove

some frames which may not contain a higher degree of error compared to frames

removed with a higher SVM score threshold. In general, however, there is a

positive correlation between the SVM score and pose estimation accuracy.

Results: Joint localisation. Figure 4.17 demonstrates the improvement in

joint localisation obtained by discarding frames that the evaluator classifies as

failed. This yields an 8.5% increase in average accuracy (from 74.9% to 83.4%) at

a maximum distance of 5 pixels from ground truth, with 40.4% of the test frames

remaining. One can observe a particularly significant improvement in wrist and

elbow localisation accuracy. This is due to a majority of hand mixup frames

being correctly identified and filtered away. The improvements in other joints are
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Figure 4.17: Pose estimation with/without evaluator. Average accuracy of
per-joint estimates are shown without (left) and with (right) evaluator when the
operating point of the pose evaluator is set to the optimum in Figure 4.16a.

due to the evaluator filtering away frames where joints are assigned incorrectly

due to segmentation errors.

Results: Pose visualisation. A scatter plot of stickmen for the forest joint

predictions are plotted on all test frames in Figure 4.18a. Sticks are marked as

orange if the elbow or wrist joints are more than 5 pixels from ground truth.

One observes erroneous joint predictions tend to exaggerate the length of upper

arms. Typically wrist joint errors occur when the wrists are further away from

the torso centre. Figure 4.18b shows the same plot as in Figure 4.18a but only

on testing frames marked as successful by the evaluator. Notice the evaluator

has successfully removed errors on the elbows and wrists while still retaining the

majority of the correct poses.
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(a) Pre evaluator (b) Post evaluator

Figure 4.18: Pose visualisation with/without evaluator. (a) shows scatter
plots of stickmen for pose estimates from forest on all training data. (b) shows
scatter plot of pose estimates from forest on training data marked as containing
good poses by the evaluator. Elbow and wrist joints greater than 5px from ground
truth are indicated by orange sticks.

4.4.4 Computation time

The following computation times are on a 2.4GHz Intel Quad Core I7 CPU with

a 320 ⇥ 202 pixel image. The computation time for one frame is 0.14s for the

co-segmentation algorithm, 0.1s for the random forest regressor and 0.1s for the

evaluator, totalling 0.21s (⇡ 5fps). Face detection [Zhu and Ramanan, 2012] takes

about 0.3s/frame for a quad-core processor. The per-frame initialisation timings

of the co-segmentation algorithm are 6ms for finding the dynamic background

layer and static background, 3ms for obtaining a clean plate and 5ms for finding

the image sequence-wide foreground colour model, totalling 14ms (approx. 24min

for a 100K frames). In comparison, Buehler et al .’s method runs at 100 seconds

per frame on a 1.83 GHz CPU, which is two orders of magnitude slower. Each

tree for our multi-signer random forests trained with 15 videos takes 20 hours to

train.
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4.5 Co-segmentation with Two Data Sources

The pose estimation method described in this chapter relies on accurate fore-

ground segmentations of the signer, which (even with the described co-segmentation

algorithm) are challenging to determine due to the colours of the foreground and

background often being similar. In this section, we briefly describe an improve-

ment for this co-segmentation method that we implemented post submission of

the original version of this work. In particular, we show that for new TV broad-

casts (those in Extended BBC Pose dataset, not in the original BBC Pose), the

segmentation method described in this chapter can be improved upon by record-

ing and using an additional source of freely available data.

The key observation is that the exact same TV programmes are broadcast with

and without an overlaid sign language interpreter, as shown in Figure 4.19. If

the two videos can be perfectly aligned, and any noise can be removed, then this

provides a very strong cue for segmenting the foreground.

A caveat is that there are no pose estimation labels available from the semi-

automatic tracker of [Buehler et al., 2011] (which we used to train the pose

estimator in this chapter) for these new videos, which means that these new

videos cannot be used directly for training a pose estimator. However, the pose

estimator from this chapter can be applied to these new videos to estimate poses,

resulting in more videos with (somewhat noisy) pose estimates (which are, qual-

itatively judging, significantly better due to better segmentations). This is the

method used to generate segmentations for the Extended BBC Pose dataset, Sign

Extraction dataset and Extended Sign Extraction dataset.
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(a) (b) (c) (d)

Figure 4.19: Co-segmentation using two complementary data sources.
The signer-overlaid frame (a) and original frame (b) are subtracted after align-
ment, resulting in a di↵erence image (c) that is used as a foreground clamp (in
yellow) and to generate GrabCut constraints. (d) shows the segmentation output.

We next briefly describe how these two data sources are used to obtain fore-

ground segmentations. Segmenting with the two data sources is not straight-

forward as the two videos di↵er greatly in broadcast quality (high definition vs

standard definition), which results in many spurious edges if one simply computes

an aligned di↵erence image. We tackle this by finding edges in the original video

and filtering these away from the di↵erence image. The di↵erence image then

undergoes a set of image processing operations that produce a clean foreground

‘clamp region’ shown in yellow in Figure 4.19(c). This per-frame clamp region is

used: (i) as a foreground clamping region in GrabCut [Rother et al., 2004], (ii) for

building an accurate video-wide global foreground colour model, and (iii) for par-

tially replacing the colour posterior unary in frames with similar foreground and

background colours. A secondary GrabCut unary is also computed based on the

background colour model of the video without an overlaid signer.

These improvements yield near-perfect segmentations similar to Figure 4.19(d)

for signed TV broadcasts. We evaluate these results qualitatively, as the manual

ground truth segmentation masks used in Section 4.4.1 are for old videos for

which we do not have two sources of data (the original non-signed TV broadcast
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is not available).

4.6 Conclusion

In this chapter we have presented a fully automatic arm and hand tracker that

detects joint positions over continuous sign language video sequences of more

than an hour in length. The method attains superior performance to a state-of-

the-art long term tracker [Buehler et al., 2011], but does not require the manual

annotation and, after automatic initialisation, performs tracking in real-time on

people that have not been seen during training. Moreover, the method associates

the joint estimates with a failure prediction score, enabling incorrect poses to be

filtered away.

The contributions have more general applicability, beyond the BBC TV broad-

casts: (i) the co-segmentation method could be easily generalised to other simi-

larly laid out TV broadcasts, e.g . the majority of EU countries broadcast their

signed TV broadcasts in a format suitable for this method; and (ii) joint posi-

tions can be predicted by a random forest from RGB in general once the person is

segmented from the background (as in the Kinect line of research [Shotton et al.,

2008], but here for RGB frames without depth).



Chapter 5

Enhancing the Random Forest

Pose Estimator

This chapter presents three enhancements to the random forest pose estimator

in Chapter 4:

1. Domain adaptation for short-sleeved signer videos: The pose estima-

tor in Chapter 4 only functions on videos with long-sleeved signers, as the data it

is trained on does not contain any videos with short-sleeved signers. We present a

domain adaptation method to transfer the tracker from videos with long-sleeved

signers to videos with short-sleeved signers (Section 5.1).

2. Sequential pose estimation: The pose estimator in Chapter 4 predicts

all joints in one go. We present a method that predicts the joints sequentially,

and show significant gains in performance (Section 5.2).

94
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3. Temporal information for pose estimation: The pose estimator in

Chapter 4 also predicts joints from a single frame. We show how temporal in-

formation can be used (in the form of optical flow) to improve the predictions

(Section 5.3).

5.1 Domain Adaptation for Pose Estimation

Chapter 4 showed that we can train a robust real-time tracking system capable

of generalising to new signers, but the method required that the signers were

wearing long sleeves.

In this section we develop an upper body pose estimator that extends the set

of videos that can be tracked. In particular, for short-sleeved signers (for which

training annotation is not available), we show how we can synthesise training data

by overlaying bare arms onto videos of long-sleeved signers (for which training

annotation is available).

To this end, we will describe methods for:

1. Synthesising short-sleeved training data: We show how to use side-

information about a signer’s appearance in clothing (such as a specific sleeve

length) in the target domain to produce semi-synthetic training data (Section 5.1.1,

‘Stage 1’).
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2. Personalising the synthesised training data: We show that, given the

semi-synthetic training data, one can re-synthesise it so it becomes signer-specific.

This refined semi-synthetic data can then be used to train a personalised pose

estimator that is tuned to a particular person’s arm shape and sleeve length

(Section 5.1.2, ‘Stage 2’).

Both steps contribute a significant boost to pose estimation performance, as

shown in Figure 5.1(e).

Related work. Using synthetic images for training pose estimators has been

successful in the past [Agarwal and Triggs, 2006, Everingham and Zisserman,

2005, Shakhnarovich et al., 2003, Shotton et al., 2011, Sun et al., 2012]. Of

particular note is the work by [Shotton et al., 2011] where huge quantities of

depth images were synthesised for training a full upper body pose detector. In

our case, we adopt a similar approach to generate large amounts of data, but

instead combine real data from signers wearing long sleeves and overlay synthetic

sleeve information.

5.1.1 Stage 1: Synthesising training data

Our aim is to train a random forest pose estimator similar to Chapter 4, for use in

videos where signers are wearing short sleeves. We show how to transfer knowl-

edge learnt from the data containing long-sleeved signers and create thousands

of semi-synthetic training images for signers wearing short sleeves, which we can

use to train a random forest pose estimator tuned for a particular sleeve length.
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Figure 5.1: Training an upper body pose estimator using knowledge
from the source domain. In this example, the transfer is from a source do-
main (a) where signers wear long sleeves, to a target domain (c)–(e) where sign-
ers wear short sleeves. The red and green lines on the signer show the output
pose. The target domain results show: (c) the detector trained directly from
the source domain; (d) trained from initial semi-synthetic images constructed us-
ing the source domain; and (e) from personal semi-synthetic images constructed
from both source and target domain. (b) shows accuracy of (c)–(e) in detecting
the wrist joint in the target domain. Accuracy is percentage of predicted joints
within a distance d pixels from ground truth (scale bar shown in top left of (a)).
The accuracy almost doubles at 8 pixels.
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Similarly to Chapter 4, the input into our pose estimator is a colour poste-

rior (CP) image (illustrated in Figure 5.2(a)), which highlights skin, torso and

background regions which are important for tracking. To generate semi-synthetic

data of signers wearing short sleeves, we take CP images of signers wearing long

sleeves and augment them with bare arm information. We choose to synthesise

CP images instead of using the original RGB image because it contains less infor-

mation (less variation due to texture and lighting e↵ects) and is therefore easier

to model and synthesise accurately.

Semi-synthetic data for tracking a target signer wearing short sleeves is gener-

ated in four steps:

1. Obtain colour posterior (CP) images and body joint locations of

signers wearing long sleeves: The body joint locations are obtained using

the Random Forest pose estimator described in Chapter 4.

2. Measure the sleeve length of the target signer: Sleeve length of a tar-

get signer is provided as an input value between 0 and 1, which is the normalised

length of the sleeve between the signers shoulder and wrist. For example, a sleeve

length of 0.5 would represent fully sleeved upper arm and bare lower arm. For a

target signer, sleeve length is measured manually on a single image.

3. Form an arm-skin template for upper and lower arms based on

measured sleeve length: The appearance of bare arms in a CP image is

synthesised using four rectangular templates describing upper/lower, left/right
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(a) (b) (c) (d) (e) (f)

Figure 5.2: Stages in synthesising training data. Rows depict di↵erent
sleeve length (sleeves in the top row are shorter than in the bottom row). (a)
Raw RGB image and CP image counterpart of short-sleeved signers. (b) Exam-
ple long-sleeved signers and CP images. (c) Synthetically produced CP images of
short sleeves using CP images from (b) and of initial arm templates. (d) Person-
alised synthetic CP images using learnt arm templates. For closer comparison,
rotated left arms of the synthetic images in (c) and (d) are shown in (e) and
(f) respectively.

bare arms as shown in Figure 5.3. The shapes used are crude tapered rectangles

from elbow to wrist for lower arms, and shoulder to elbow for upper arms, as

shown in Figure 5.3.

4. Synthesise bare skin colour on arms using joint locations and arm

templates: In this last step, the arm templates are positioned according to the

provided joint locations and are used as stencils for placing skin colour values in

the correct arm shape, as is shown in examples in Figure 5.2(c). Foreshortening

of the arm part is handled naturally by anisotropic scaling of the template in the

shoulder/elbow-to-elbow/wrist direction for upper/lower arm parts.
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Shoulder 
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Torso/head 

Wrist 

Upper Lower Upper Lower 

Joint key 

Figure 5.3: Initial and personalised arm templates. The personalised arm
and torso/head templates shown here are for the signer in Figure 5.4(a).

Head
Right wrist
Left wrist
Right elbow
Left elbow
Right shoulder
Left shoulder
Right mid−lower−arm
Left mid−lower−arm

(a) (b) (c) initial (d) personal (e) (f) initial (g) personal

Figure 5.4: Illustration of sample and verify procedure. (a) Target signer
and (b) the corresponding CP image. (c) Shows body joint confidence map from
initial forest, (d) shows the confidence map from the personalised forest, and
(e) gives the body joint colour key. (f) and (g) show the most likely whole-image
templates using initial and personalised arm templates respectively (computed by
sampling joint locations from (c) and (d) respectively). The personalised model
produces better joint samples (here for the right wrist).

5.1.2 Stage 2: Personalising the synthesised training data

In this section, we show that the synthetic training data from Stage 1 can be

personalised (as shown in Figure 5.2). Figure 5.3 shows examples of personalised

arm templates learnt from the signer in Figure 5.4(a).

This method continually alternates between updating the arm templates and

re-training a random forest joint detector, until no change occurs in the arm

templates.

The initial semi-synthetic CP images with a sleeve length matching a target

signer from Stage 1 are refined in four steps:
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1. Train a random forest pose estimator on semi-synthetic images

and apply to frames of the target signer. We train a random forest body

pose estimator (as in Chapter 4), but instead use the semi-synthetic images from

Stage 1 for training. This forest is applied to a set of CP images containing the

target short sleeved signer, as shown in Figure 5.4(a)-(b). The random forest

provides a confidence map per joint per pixel (shown in Figure 5.4(c)).

2. Refine the pose estimates using a sample and verify approach: This

confidence map could be used to infer body joint locations by selecting the points

with maximum confidence per joint independently. However, the most confident

location is not always the correct location, and the independence assumption is

incorrect. We address these problems by adopting a sample and verify approach

similar to [Buehler et al., 2011] and [Charles and Everingham, 2011]. Joint loca-

tions are sampled from the confidence map and scored with a verification function

that considers the whole image content. This gives a chance to locations with

weak confidence, and considers all joints dependently. The sampling process is

repeated and the best scoring sample is selected.

3. Learn personalised arm templates from refined pose estimates:

Given the improved joint predictions from the sample and verify approach, per-

sonalised arm templates are learnt. The joint predictions are used to extract

rectangular windows of upper and lower arm parts, resulting in four sets of train-

ing windows for upper/lower and left/right arm parts. These training windows

are then used to learn colour distributions for the personalised arm templates.
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4. Re-train the pose estimator with personalised arm templates syn-

thesised on top of source (long-sleeved) videos: Finally, the pose esti-

mator is retrained on the synthesised CP images using the personalised arm

templates. This pose estimator can then be applied to the target short-sleeved

signer video.

These steps are repeated until no change occurs in the arm templates (typically

3 iterations for our data).

Figure 5.4(c) and (d) demonstrate the improvement in joint confidence maps

produced using the initial and personalised random forests.

5.1.3 Experiments

In this section we test our method on signers wearing clothes with varying sleeve

length.

Short and long-sleeved videos. Experiments are conducted on 5 additional

short-sleeved videos (similar to the videos in the BBC Pose dataset but with

shorter sleeves). Sleeve length varies between 1 and 0.2. For long-sleeved training

videos, frames from the 10 training videos of BBC Pose (Section 3.1.1) are used.

Testing data. Each of the 5 short sleeve videos is split into two sections. The

first 60% is used for training and the last 40% is used for testing. The performance

of our system is evaluated on 200 diverse frames selected from each testing section
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Figure 5.5: Pose estimation performance for short-sleeved test videos,
showing a comparison of Chapter 4 (trained on long-sleeved training data) to the
initial and personalised short sleeve pose estimator. Per-joint average accuracy
against allowed pixel distance from ground truth is shown.

by clustering poses (1000 frames in total). Testing frames are manually annotated

with joint locations.

Parameters. Tree depth of 64 and 8 trees in the forest was optimal. Stage 1

forests are trained on 2,000 CP images; Stage 2 forests on 4,000 CP images.

We found two iterations of the refinement su�cient, with little improvement

thereafter.



5.2. Pose Estimation with Sequential Forests 104

Method Head Wrists Elbows Shoulders Lower Mid-arms Average
Chapter 4 94.3 16.4 58.1 75.2 20.8 48.3
Initial without balancing 91.2 23.7 76.8 72.4 42.7 58.1
Initial with balancing 93.5 28.7 76.8 76.8 49.9 62.0
Personalised 95.8 46.6 80.7 81.3 59.6 70.2

Table 5.1: Table showing pose estimation performance for short-sleeved
test videos. Average accuracy of per joint estimates is shown, comparing the
pose estimator from Chapter 4 (trained on long-sleeved training data) to the
initial and personalised short sleeve pose estimator. A joint is deemed correct
if at most 5 pixels from manual ground truth. Personalising the training shows
significant improvement.

Comparison to method in Chapter 4. Figure 5.5 shows a comparison be-

tween forests trained on long sleeve videos (Chapter 4), the initial forest trained

on semi-synthetic images (with initial arm templates), and the updated forest us-

ing personalised semi-synthetic images. All methods work equally well for head

and shoulders, but a large improvement is observed for wrists and elbows.

Table 5.1 shows accuracy when a joint is considered correct at only 5 pixels

from ground truth (scale bar shown in top left of Figure 5.1(a) for comparison).

Using forests trained on personalised semi-synthetics produces best results for all

joint classes.

5.2 Pose Estimation with Sequential Forests

The pose estimators presented so far are all sliding window classifiers, which

means that they only utilise context within a small sliding window per frame

for making their predictions. This means they are unable to capture any global

structure of the upper body and ignore dependencies between body parts, which

results in some invalid upper body poses, and confusions between left and right
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hand predictions. In this section, we show that we can mitigate these problems

by implicitly encoding an upper body kinematic chain with a sequential forest.

We describe a pose estimation model with the following benefits:

1. Sequential prediction: The joints are estimated sequentially, taking ac-

count of the human kinematic chain. This means that we don’t have to make

the simplifying assumption of most previous Random Forest methods – that the

joints are estimated independently.

2. Computational e�ciency with mixture of experts: By combining

multiple Random Forest classifiers and regressors (as a mixture of experts), we

show that the learning problem is tractable and that more context can be taken

into account.

The resulting method is computationally e�cient, and can overcome a number

of the errors (e.g . confusing left/right hands) made by pose estimators that infer

their locations independently. We show that we improve upon the method in

Chapter 4 on two datasets: the BBC TV Signing dataset (Section 3.1.1) and the

ChaLearn Gesture Recognition dataset (Section 3.2.4).

5.2.1 Sequential pose estimation

Figure 5.6 illustrates the sequential detection. We encode the detection sequence

so that each joint depends on the location of the previous joint in the kinematic

chain: the head is detected first, followed by shoulders, elbows, and wrists, sep-
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Shoulder Elbow Wrist Output 
(a) (b) (c) 

Confidence map 
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Input 

Figure 5.6: Process diagram of sequential upper body pose estimation.
(a) Input RGB image. (b) Given the head position, joints are detected using
a separate mixture of experts per joint, in order of shoulder, elbow then wrists.
Knowledge of previous experts’ output joint prediction (white arrows) is passed on
when estimating the next joint in sequence. Each expert is responsible for a region
of the image relative to the previous joint in sequence. Experts are positioned
with fixed learnt o↵set vectors (positions shown as black dots with black arrows
indicating o↵sets). (c) Joint detections produce a body joint confidence map
(di↵erent colour per joint) shown superimposed on an edge image, and (d) the
points of maximum confidence are selected (final pose output illustrated with a
skeleton).

arately for left and right arms. Beginning with an RGB frame, the frame is first

encoded into the colour posterior feature representation described in Chapter 4.

For each joint, a separate mixture of experts (random forests) votes for the next

joint location (votes shown as white lines in figure). Each expert (shown as black

dots in figure) is responsible for a particular region of the image dependent upon

the location of the previous joint in the sequence (positioned according to fixed

learnt o↵set vectors, shown as black arrows). The output from this process con-

sists of a confidence map over pixels for each joint, illustrated in Figure 5.6(c) with

each joint in a di↵erent colour, with higher-intensity colours indicating higher

confidence.

Two types of forests: classification and regression forests. Our sequen-

tial pose estimation method uses two types of Random Forests (RFs), one of each
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type, for each expert: (1) classification forests, which measure the likelihood that

an image region (determined by the learnt o↵set vector w.r.t. the previous joint)

contains useful context for predicting the joint of interest, termed the region’s

‘utility score’; and (2) regression forests, which identify the joint’s precise po-

sition within the regions, weighted by the utility scores from the classification

forest. In contrast to the sliding window part detector RFs of such as those in

Chapter 4 or [Shotton et al., 2011, Yang and Ramanan, 2011], our expert joint

detectors are constrained to local image regions assigned by the classification

forest. This considerably simplifies the learning task and yields a much more

computationally e�cient joint detector.

The sequential forest consists of four main components: (i) a global cost func-

tion, (ii) o↵set learning (between connected body parts), (iii) classification forests

(for computing region utility scores), and (iv) regression forests (voting for joint

positions in the regions, weighed by their region utility scores). We describe each

of these in detail.

Global cost function. The sequential detection model is encoded as two sep-

arate ‘chains’ of detections, one for each arm. Each detection chain maximises

the output from a mixture of ‘experts’ (random forest regressors), each of which

votes separately for the most likely position of a joint within a region. These

experts’ votes are weighted according to the region’s ‘utility score’, provided by

the random forest classifier. Given an input image I, upper body joint detection

reduces to optimising the cost function:
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li = argmax
li

KX

k=1

wikp(li|Wik), (5.1)

where {l1, ..., l4} are 2D joint locations for head, shoulder, elbow and wrist for

one of the arms; K is the number of experts (di↵erent for each body joint; we

use 1 expert for shoulders, 3 for elbows and 5 for wrists); Wik is the region for

the k

th expert for joint i; wik are the region utility scores from the RF classifier,

measuring how useful the context in image regionWik is for predicting the position

of the joint; and p(li|Wik) is the likelihood of joint i being located at position li

(obtained from the RF regressor). The locations of region centres are determined

by previously detected joints and a learnt o↵set vector �ik (see below for how

these are obtained) as li�1 + �ik.

Learning expert o↵set vectors. The human kinematic chain sets clear phys-

ical constraints for where one joint (e.g . the elbow) can be located given another

joint (e.g . the shoulder). These ‘o↵sets’ essentially represent the most common

positions of a joint relative to the previous joint in the sequence. We learn them

from training data by clustering the relative o↵set of joint i from joint (i�1) into

K clusters using k-means (where K is defined above). The centroid of the clus-

ters are used as the o↵sets �ik, and the variances are later used to add robustness

to detections.

Classification forests. The o↵set vectors determine regions of the image that

normally contain useful context for predicting the position of a given joint. How-
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ever, for a given pose, not all pre-learnt regions are equally useful. We therefore

employ a classification forest to obtain a ‘utility score’ for each of the regions.

This utility score is used in the global cost function to weight the output from

the expert body joint regressor (the regression forest). A separate classification

forests, for each joint and expert, classifies an image region centred at Wik as

either contained or not-contained (indicating whether joint i is contained in the

region or not). The average of all class probabilities across all trees is used to

form the utility score wik. Parameters of test functions are learnt by minimising

a measure of Gini impurity.

Regression forests. Given all pre-learnt regions and the position of the pre-

vious joint in the sequence, the task of the regression forests is to predict where

in each region the joint is most likely to be. A separate regression forest, for

each joint and expert, votes for pixel locations of joint i based on boolean tests

performed on an image region centred at Wik. All votes across all trees and all

forests have equal weight. Parameters of test functions are learnt by recursively

splitting a random selection of training regions (all of which contain the joint i)

into two sets, based on minimising the sum of joint position variance within the

two regions. The average joint position across regions falling at a leaf node is

used as our voting vector. The aggregated voting vectors form the likelihood

function p(li|Wik).
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5.2.2 Experiments

Three experiments are conducted using the standard long-sleeved BBC TV dataset

(described in Section 3.1.1). Experiments 1 and 2 evaluate the quality of the

structured output of the sequential detection system, and Experiment 3 eval-

uates the accuracy of pose estimates. Experiment 4 evaluates our method on

the ChaLearn gesture dataset (Section 3.2.4) using RGB frames, and compares

against Kinect skeletal output.

BBC TV experiments

Parameter optimisation. Optimal parameters for the sequential detection

forests are found on validation videos, and set as follows. Classification forests:

8 trees per forest grown to a depth of 20 and using a square window size of 51.

Regression forests: 8 trees per forest grown to a di↵erent depth per joint type, 20

for wrists, 10 for elbows and 20 for shoulders; a square window size of 31 pixels

is used for all joint types. After fixing the parameters, the forests are retrained

on a pooled set of all training and validation videos.

Experiment 1: Constrained pose output. In this experiment we measure

the proportion of output poses that are ‘constrained’ (essentially the proportion

that is ‘nearly correct’). We define a pose as ‘correctly constrained’ if the distance

between connected joints (head to shoulder, shoulder to elbow and elbow to wrist)

is less than the maximum ground truth projected limb length plus a threshold

distance. Figure 5.7(b) shows the percentage of constrained pose outputs against
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a constraint threshold (in pixels). Notably, 20% of pose estimates from Chapter 4

have invalid limb lengths (at constraint threshold zero), whereas the sequential

forest (SF) only has 7%, with SF completely eradicating unconstrained pose

outputs at a constraint threshold of 13 pixels.

Experiment 2: Hand confusions. This experiment measures the proportion

of frames in which the two hands of the humans are confused (i.e., right hand

is detected as left, and vice versa) – a very common error in previous methods.

Hand confusions are detected by subjectively analysing output on the test set for

frames where a wrist estimate is further than 5 pixels from ground truth. Manual

labelling of hand confusion is used, as automatic procedures are not reliable where

the frames contain background segmentation errors or errors in the colour labelled

image feature. As shown in Figure 5.7(a), SF reduces hand confusion errors by

61%, which is a considerable improvement.

Experiment 3: Pose estimation accuracy. This experiment measures pose

estimation accuracy as a function of distance from ground truth. Figure 5.7(c)

and (d) show results for wrists and elbows. Improved accuracy is observed using

SF over Chapter 4 for both wrists and elbows, with a particularly marked increase

in accuracy for the wrists. SF does not perform as well when (1) background

subtraction fails (e.g . arms are cut o↵), or (2) hands are in front of the face or

clothing contains skin-coloured regions.
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Figure 5.7: Sequential forest performance on the BBC TV dataset.
(a) Bar chart showing percentage of hand confusions (lower is better); (b) number
of constrained (near-correct) poses across all values of the constraint threshold
(higher is better); (c) & (d) accuracy of average wrist and elbows joints respec-
tively (averaged of left and right arms) against allowed pixel distance from ground
truth (higher is better) (at 5 pixels).

ChaLearn experiments

Training & testing data. Each tree in both the sequential and classifica-

tion forests sample 7,220 diverse frames from the training and validation videos

combined. Diverse training frames are found by clustering poses and sampling

uniformly from clusters. Testing data is formed by sampling 3,200 diverse frames

from all testing videos. Kinect skeletal output is used as ground truth.

Parameter optimisation. We rescale the ChaLearn videos to be of same size

as those in the BBC TV dataset, and use the parameters found optimal in the

BBC TV experiments.

Baselines. The upper body tracker from Chapter 4 is used as a baseline (trained

using the same parameters as for the BBC TV dataset). We train with the same
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training frames used by our method.

Experiment 4: Pose estimation accuracy. Figure 5.8(a) and (b) compares

the method from Chapter 4 to SF. A significant improvement is seen in the wrists,

with a stellar improvement for the elbows when using SF. The pose estimator

in Chapter 4 does not generalise well to persons wearing trousers and sleeves of

di↵erent length (due to confusions caused by legs and arm skin regions). The

constrained output of SF helps overcome these problems.

Figure 5.8(c) shows example pose estimates from Chapter 4 and SF in top and

bottom rows respectively.

Computation time. Using a 2.2GHz Intel Quad Core I7 CPU, computation

time on a 320x202 pixel image is 0.4s for the sequential forest (272 trees in total).

The sequential forest is implemented in Matlab with each tree only taking 1.5ms

to evaluate the whole image due to the reduced search space. A classification

tree takes 2.5 hours to train and a regression tree takes 4.5 hours.

5.2.3 Discussion

Most previous methods (such as that in Chapter 4) assume independence for

each output variable, and ignore the output structure [Shotton et al., 2011]. Past

solutions to this have been of two kinds: post-processing methods, and implicit

methods. Post-processing methods take the output of the Random Forests and

fit models to them, such as Markov or Conditional Random Fields [Jancsary
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Figure 5.8: Sequential forest performance on the ChaLearn dataset.
(a) & (b) show average accuracy for wrists and elbows (against allowed dis-
tance from ground truth (Kinect provided skeleton) in pixels). Sequential forests
(SF) show a significant improvement for wrist detections over Chapter 4, and
nearly double the accuracy for the elbows at 5 pixels from ground truth. (c) Ex-
ample pose estimates on ChaLearn for the forest in Chapter 4 (top row) and SF
(bottom row).

et al., 2012], or simply filter the output by checking global consistency of lo-

cal detections [Yang and Patras, 2013]. Usually post-processing methods are

rather slow due to the additional overhead. In contrast, implicit methods build

constraints between output variables into the detection method directly during

training [Kontschieder et al., 2013] by passing the output from a sequence of
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classifiers as an input into another classifier.

The method presented in this section addresses all of these issues by combining

the benefits of both types of approaches (post-processing and implicit). First,

unlike methods which aim to learn context, we take advantage of the kinematic

constraints of the human body and explicitly build in context which we know is

of importance, such as elbow location when detecting the wrist. A pose prior is

implicitly built in by using a sequence of locally trained Random Forest experts for

each body parts (incorporating both classification and regression forests). This

sequential detection method is capable of learning strong dependencies between

connected body parts while keeping the search window small and the learning

problem tractable. Second, our method removes the need for a sliding window

part detector. This allows many more trees to be used, boosting accuracy while

still maintaining e�ciency. Third, our method’s locally trained Random Forests

deal with less of the feature space compared to its sliding window counterparts,

which makes learning easier and, as we show, leads to improved accuracy.

5.3 Temporal Information for Pose Estimation

The pose estimators presented so far operate on a frame-by-frame basis, and

ignore the temporal information available in videos. However, in reality, strong

dependencies exist between temporally close video frames. In this section, we

show that optical flow can be used to temporally propagate predictions, and that

this significantly improves the robustness of the pose estimates.
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In particular, we show that the pose estimation confidence maps (such as those

in Figures 4.15 and 5.6) produced at a frame t can be reinforced with temporal

context from nearby frames. Additional confidence maps are produced for neigh-

bouring frames, and are then aligned with frame t by warping them backwards or

forwards using tracks from dense optical flow. This is illustrated in Figure 5.6(c)

for confidences produced within n frames either side of frame t. These confi-

dences represent a strong set of ‘expert opinions’ for frame t, from which joint

positions can be more precisely estimated than when only using one confidence

map. Finally, body joint locations are estimated at frame t by choosing positions

of maximum confidence from a composite map produced by combining warped

confidences (examples shown in Figure 5.6(d)).

5.3.1 Reinforcing pose estimates with optical flow

In more detail, the pose estimates are reinforced in three steps: (1) the confidences

from nearby frames are aligned to the current frame using dense optical flow;

(2) these confidences are then integrated into a composite confidence map; and

(3) the final upper body pose estimate for a frame is then simply the positions

of maximum confidence from the composite map. Below we discuss the details

of the first two steps.

1. Warping confidence maps with optical flow. For a given frame t,

pixel-wise tracks are computed from neighbouring frames (t � n) to (t + n) to

frame t using dense optical flow [Weinzaepfel et al., 2013]. Tracks are used to
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Figure 5.9: Process diagram of temporal upper body pose estimation
on RGB input frame t. Detection reinforcement with optical flow for a per-
son’s right arm is shown running from left to right. (a) Given the head position,
joints are detected using the sequential forest from Section 5.2. (b) Joint de-
tections produce a body joint confidence map (di↵erent colour per joint) shown
superimposed on an edge image. (c) Confidences at frame t are reinforced by
combining warped confidences (using optical flow) from n frames either side of t.
(d) Body joint estimates are chosen as points of maximum confidence from the
combined confidence map, with final pose output illustrated with a skeleton on
RGB frame t.

warp confidence values within a neighbouring map to align them to frame t by

shifting confidences along the tracks. Given the horizontal and vertical dense

optical flow maps vx and vy and a confidence map I, the warped confidence map

W is:

Wi,j = interpi,j(I, i� vxi,j, j � vyi,j) (5.2)

where interpi,j returns the linearly interpolated value of I at coordinate (i �

vxi,j, j � vyi,j).
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Right Wrist (Wrong) Left Wrist (Correct)

Right Wrist (Correct)

(a) Frame t (b) Confidence at t (c) Warping (d) Composite at t

Figure 5.10: Warping neighbouring confidence maps for improving pose
estimates. (a) RGB input at frame t. (b) Confidence map at frame t for
left (blue) and right (green) hands (crosses show incorrect modes of confidence).
(c) Confidence maps from frames (t � n) and (t + n) warped to frame t using
tracks from optical flow (green & blue lines). (d) Composite map with corrected
modes.

This process is repeated for confidences from all neighbouring frames. The final

confidence map is an average of all these warped maps. Example tracks and the

warping of wrist confidence values are shown in Figure 5.10(c).

2. Forming the composite confidence map. Aligned neighbouring confi-

dence maps are integrated into a composite confidence map by taking the pixel-

wise average (shown in Figures 5.9(d) and 5.10(d)). The composite map alleviates

misdetections caused by failures in our feature representation. For example, Fig-

ure 5.11(a–d) shows examples where the image representation (b) loses relevant

information w.r.t. the wrist location, with no hope of recovery using the confi-

dences in (c). However, the composite confidence map (d) contains confidence in

the correct regions even in these extreme circumstances. Figure 5.10(a-d) demon-

strate the advantages of this method under the challenging scenario where the

arms cross.
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Figure 5.11: The improvement from using optical flow. (a) Example input
images and (b) corresponding colour features, with the top row showing an error
in segmentation (right arm missed), and bottom row showing a left hand in front
of the face. (c) shows sequential forest (SF) confidences (superimposed on an edge
image) for the left and right wrists for the two rows, with the first two modes of
confidence (shown as crosses) both in wrong wrist locations. (d) demonstrates
improved confidence output from using optical flow: in the top row the 2nd best
mode of confidence now correctly locates the right wrist, and in the bottom row
the 1st mode of confidence locates the left wrist.

5.3.2 Experiments

This section evaluates the improvement from using temporal information on the

BBC Pose dataset of long-sleeved signers. Two experiments are conducted: the

first measures the number of hand confusions, the second pose estimation accu-

racy.

Parameters. We use a neighbourhood of n = 15 frames to compute composite

confidence maps.

Experiment 1: Hand confusions. Similar to Section 5.2, this experiment

measures the proportion of frames in which the two hands of the humans are
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Figure 5.12: Performance of sequential forests + optical flow on BBC
TV dataset. (a) Bar chart showing percentage of hand confusions (lower is
better) – SF+flow does best; (b) & (c) accuracy of average wrist and elbows joints
respectively (averaged of left and right arms) against allowed pixel distance from
ground truth (higher is better) – SF+flow increases accuracy by 15% for wrists
compared to Chapter 4 (at 5 pixels); (d) shows SF+flow (bottom row) correcting
incorrect pose estimates from Chapter 4 (top row).

confused. Figure 5.12(a) shows the percentage of hand confusions. Sequential

forests combined with optical flow (SF+flow) makes further improvements over

SF alone, reducing hand swap errors by 66%.

Experiment 2: Pose estimation accuracy. Figure 5.12(b) shows pose esti-

mation accuracy as a function of distance from ground truth. SF+flow gives an

additional boost of 15% for the wrists, which is a significant improvement.

Computation time. Using a 2.2GHz Intel Quad Core I7 CPU, the computa-

tion time on a 320x202 pixel image is 1.2s for optical flow.
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5.4 Conclusion

We have demonstrated three enhancements for Random Forests: (i) tracking per-

sons with short-sleeves (by transferring from existing training material to a new

domain and automatically personalising the tracker); (ii) predicting joints sequen-

tially rather than independently (by implicitly encoding an upper body kinematic

chain using a mixture of Random Forest experts); and (iii) using temporal infor-

mation in the form of optical flow to improve the robustness of predictions (by

spatially aligning pose confidence maps through time). All these enhancements

are shown to improve pose estimation performance (with particularly significant

improvements from predicting joints sequentially).

While the e↵ects of these enhancements have been shown for Random Forests,

they are generally applicable to other pose estimators. In the domain adaptation

work (for short-sleeved signer videos), the synthesised training data could be used

to train any other pose estimator (e.g . a deep convolutional neural network pose

estimator). Similarly, the idea of cascaded pose estimation is not limited to RFs

(and has recently also been investigated e.g . in the deep net literature [Toshev

and Szegedy, 2014]). This cascade could be greedy (as in our sequential forest

method) or globally optimised (as e.g . in [Yang and Ramanan, 2011, 2013]).

Finally, using optical flow to warp the joint prediction confidences from past and

future frames could be used with any pose estimator that predicts a confidence

map of joint locations (as we show for CNNs in Chapter 6).

One could also imagine generalising the domain adaptation work to other kinds

of di↵erences (such as v-shaped necklines, long hair etc.) using a similar approach
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as presented in this chapter. Another approach would be to fully personalise the

video pose estimator for a particular person, allowing it to exploit person specifics

(such as tattoos, hair length, jewellery etc.). We explore this idea in newer work

(not included in this thesis) that has been submitted to BMVC’15.



Chapter 6

Pose Estimation with ConvNets

Building upon the recent success with deep neural networks, this chapter tack-

les the problem of pose estimation in videos with deep convolutional networks

(ConvNets).

In Chapters 4 and 5 we showed that we can train a fast and reliable pose esti-

mator using a random forest. However, the random forest relies on a hand-tuned

foreground segmentation algorithm for preprocessing the videos, without which

it performs poorly. In particular, without manual tuning of parameters, this

segmentation method fails on certain videos with unusual body shapes, unusual

absolute positions of persons in the video, or similar foreground and background

colours. Furthermore, the segmentation algorithm requires extensive computa-

tionally expensive preprocessing (to build the layered model), reducing the speed

of the method to near-realtime.

In this chapter we show how, with ConvNets, we can accurately predict the

123
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pose without the need for foreground segmentation, and in real-time (150fps on

a single GPU).

To this end, we present and compare three new deep nets for estimating human

pose from videos:

1. ‘Coordinate’ network. This network regresses the coordinates positions of

joints directly. This network exploits temporal information from multiple frames,

leading to better performance than predicting from a single frame. (Section 6.1)

2. ‘Heatmap’ network. This network regresses a ‘heatmap’ of the joint posi-

tions. This allows visualisation of predictions and multi-modal output, yielding

significantly improved performance over the coordinate network. (Section 6.2)

3. ‘Optical flow heatmap’ network. This network regresses a ‘heatmap’ of

the joint positions and further exploits temporal information from multiple frames

with optical flow. We show that optical flow from videos can be used to constrain

pose estimates also in the context of ConvNets, thereby significantly improving

performance. As in Chapter 5, optical flow is used to warp pose predictions

from neighbouring frames. We show that a parametric pooling of these warped

heatmaps can be learnt, e↵ectively learning how to weigh the expert opinions for

di↵erent neighbouring frames. (Section 6.3)1

1The latest version of this section (with updated results) can be found in a recent paper
‘Flowing ConvNets for Human Pose Estimation in Videos’ available at http://tomas.pfister.
fi
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Figure 6.1: Coordinate Network (CoordinateNet). Given a set of input
frames, the convolutional network regresses the positions of the head, shoulder,
elbows and wrists.

In Section 6.4 (experiments), we show that these networks outperform the other

methods presented in this thesis by a large margin.

6.1 Pose Estimation with a Deep Coordinate

Network

In this section we treat the task of estimating the pose as a regression problem,

where the regression targets are the (x, y) coordinates of the joints.

We show that this method implicitly learns constraints about the human kine-

matic chain, resulting in significantly better constrained pose estimates (i.e.,

significantly smoother pose tracks with fewer serious prediction errors) than in

previous work.

As the regressor we use a convolutional network. As shown in Figure 6.1, the

input to the network is a set of RGB video frames, and the outputs of the last

layer are the (x, y) coordinates of the upper-body joints. We base our network

architecture on that of [Sermanet et al., 2014] which achieved excellent results on
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ImageNet Challenge 2013 object classification and localisation tasks. Figure 6.1

shows the network architecture: five convolutional layers followed by three fully

connected layers. A selection of convolutional layers are followed by pooling and

local response normalisation layers, and the fully connected layers are regularised

by dropout [Krizhevsky et al., 2012]. All hidden weight layers use a rectification

activation functions (ReLUs).

6.1.1 CoordinateNet

Our network is trained for regressing the location of the human upper-body joints.

Instead of the softmax loss layer, found in the image classification ConvNets [Krizhevsky

et al., 2012], we employ an l2 loss layer, which penalises the l2 distance between

the pose predictions and ground truth.

We denote (X,y) as a training example, where y stands for the coordinates of

the k joints in the image X. Given training data N = {X,y} and a ConvNet

regressor �, the training objective becomes the task of estimating the the network

weights �:

argmin
�

X

(X,y)2N

kX

i=1

kyi � �(X,�)k2 (6.1)

An example visualisation of the loss is shown in Figure 6.2.

Multiple input frames. To exploit the temporal information available in

videos, our network is trained on multiple video frames. This is in contrast

to CNN pose estimators in previous work, which typically operate on a single
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Figure 6.2: Loss function for the CoordinateNet. At each iteration of
training, the squared l2 loss between training labels (green) and current predic-
tions (red) is computed. The loss is the sum of the squared l2 distances between
training labels and predictions (white lines), summed over all body joints.

frame. This is done by inserting multiple frames (or their di↵erence images) into

the data layer colour channels. So for example, a network with three input frames

contains 9 colour channels in its data layer.

Video-specific learning: per-video mean. In contrast to RGB image pose

estimation, videos generally contain several frames of the same person. Further,

in our scenario, the person stands against a partially static background. We

exploit this for an additional preprocessing step in our learning. Without this

preprocessing step, we noticed that the network would overfit to the static back-

ground behind the person. To alleviate this overfitting, we compute the mean

image µV over 2,000 sampled frames for each video V in our training and testing

datasets and (before cropping the input image) subtract the video-specific mean

from each input image: x = x � µV for frame x of video V . As shown in Fig-

ure 6.3, this removes the video-specific static background (and, as will be shown
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Figure 6.3: Per-video mean and training augmentation. At training
time, the training data is augmented with random crops and flips. A per-video
mean is computed from a subset of frames to provide some invariance to di↵erent
background colours. The per-video mean is obtained once per video, and can be
computed on-the-fly in online pose estimation scenarios.

in the evaluation section, yields an input representation for the ConvNet that gen-

eralises much better across di↵erent videos). This approach di↵ers from static

image ConvNets, which generally compute a mean image over the full dataset,

and subtract the same mean from each input frame.

6.1.2 Implementation details

Training. The network weights are learnt using mini-batch stochastic gradient

descent with momentum set to 0.9. Each iteration samples 256 training frames

randomly across the training videos and uses them as a mini-batch. The input

frames are rescaled to height 256. A 248⇥ 248 sub-image (of the N ⇥ 256 input
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image) is randomly cropped, randomly horizontally flipped and RGB jittered, and

resized to 224⇥224. When training the ConvNet from scratch, the learning rate is

set to 10�2, and decreased to 10�3 at 80K iterations, to 10�4 after 90K iterations

and stopped at 110K iterations. In the experiments in which we pretrain the

weights on ImageNet ILSVRC-2012, learning rates are similarly decreased at

50K and 60K, and training is stopped at 70K iterations.

Testing. At test time, we crop the centre 248⇥248 of the input image, resize to

224⇥ 224 and feed forward through the network to obtain human joint location

predictions. Test augmentation (e.g . computing the mean/median of predictions

for 10 random image crops and flips, as done in classification ConvNet works)

did not yield improved results over using the centre crop only.

Training time. Training was performed on a single NVIDIA GTX Titan GPU

using a modified version of the Ca↵e framework [Jia, 2013]. Training the network

from scratch took 3 days.

Size normalisation. Since the absolute image coordinates of the people vary

across videos, we first normalise the training set with regards to a bounding

box. The bounding boxes are estimated using a face detector: the estimated face

bounding boxes are scaled by a fixed scaler (learnt from the training data such

that joints in all training frames are contained within the bounding boxes). In the

image domain, we crop out the bounding box, and rescale it to a fixed height. In

the human joint domain, we rescale accordingly, and in addition re-normalise the
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labels to the range [0, 1]. We found hyperparameter optimisation di�cult without

[0, 1]-normalised joints – in particular, the last fully-connected (regression) layer

would require a di↵erent learning rate from other layers in order to converge.

Rescaling of input for multi-frame net. In practice, for the training of

the multi-frame net to converge, input RGB values needed to be rescaled by the

number of input frames to preserve the dynamic range of the hyperparameters.

6.2 Pose Estimation with a Deep Heatmap Net-

work

This section shows that changing the regression target from the (x, y) coordi-

nates of the joints to a heatmap of joint positions leads to significant boosts in

performance. A description of this new network, and the reasons for this boost

in performance, is provided below.

6.2.1 HeatmapNet

Our network (shown in Figure 6.4) is trained for regressing the location of the

human joint positions. However, in contrast to Section 6.1 where we regressed

the joint (x, y) positions directly, here we regress a heatmap of the joint positions,

separately for each joint. This heatmap (the output of last convolutional layer,

conv7) is a fixed-size i ⇥ j ⇥ k-dimensional cube (here 64 ⇥ 64 ⇥ 7 for k = 7

upper-body joints). At training time, as the ground truth label, we synthesise a
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Figure 6.4: Heatmap ConvNet architecture.

heatmap for each joint separately by placing a Gaussian with fixed variance at the

ground truth joint position (see Figure 6.5). We then use l2 loss, which penalises

the l2 distance between the predicted heatmap and the synthesised ground truth

heatmap.

We denote (X,y) as a training example, where y stands for the coordinates of

the k joints in the image x. Given training data N = {X,y} and the ConvNet

regressor � (output from conv7), the training objective becomes the task of esti-

mating the network weights �:

argmin
�

X

(X,y)2N

X

i,j,k

kGi,j,k(yk)� �i,j,k(X,�)k2 (6.2)

where Gi,j,k(yi) =
1

2⇡�2 e
�[(y1k�i)2+(y2k�j)2]/2�2

is a Gaussian centred at joint yk with

fixed �.

We discuss implementation details (such as size normalisation of input data)

in Sect 6.2.2

Discussion. The benefits of regressing a heatmap rather than (x, y) coordinates

are twofold: first, one can understand failures and visualise the ‘thinking process’
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k joints

Figure 6.5: Regression target for learning the Heatmap ConvNet. The
learning target for the convolutional network is (for each k joints) a heatmap
with a synthesised Gaussian with a fixed variance centred at the ground truth
joint position. The loss is the l2 loss between this target and the output of the
last convolutional layer.

of the network (see Figs 6.6 and 6.7); second, since by design, the output of the

network can be multi-modal, i.e. allowed to have confidence at multiple spatial

locations, learning becomes easier: early on in training (as shown in Figure 6.6),

multiple locations may fire for a given joint (here the right wrist); the incorrect

ones are then slowly suppressed as training proceeds. In contrast, if the output

were only the wrist (x, y) coordinate, the net would only have a lower loss if it gets

its prediction right (even if it was ‘growing confidence’ in the correct position).

This is a highly non-linear and more di�cult to learn mapping.

Architecture. The network architecture is shown in Figure 6.4, and sample

activations for the layers are shown in Figure 6.7. To maximise the spatial reso-

lution of the heatmap we make two important design choices: (i) minimal pooling
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Iteration 262,400 

Iteration 1,146,400

Figure 6.6: Multiple peaks are possible with the Spatial Heatmap
ConvNet. Early on in training (top), multiple locations may fire for a given
joint. These are then suppressed as training proceeds (bottom). The arrows
identify two modes for the wrist; one correct, one erroneous. As the training
proceeds the erroneous one is diminished.

is used (only two 2⇥ 2 max-pooling layers), and (ii) all strides are unity (so that

the resolution is not reduced). All layers are followed by ReLUs except conv9

(the pooling layer). Our network architecture di↵ers from both AlexNet and re-

cent pose nets [Tompson et al., 2015]. In contrast to AlexNet [Krizhevsky et al.,

2012], our network is fully convolutional (no fully-connected layers) with the

fully-connected layers of [Krizhevsky et al., 2012] replaced by 1⇥ 1 convolutions.

In contrast to both AlexNet and [Tompson et al., 2015], our network is deeper,

does not use local contrast normalisation (as we did not find this beneficial), and

utilises less max-pooling.
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6.2.2 Implementation details

The implementation details are the same as in Section 6.1.2 except:

Training. The network weights are learnt using mini-batch stochastic gradient

descent with momentum set to 0.95. Each iteration samples 64 training frames

randomly across the training videos and uses them as a mini-batch. All layers

are followed by ReLUs except conv8 (the pooling layer); no dropout is used. A

248⇥248 sub-image (of the N⇥256 input image) is randomly cropped, randomly

horizontally flipped and RGB jittered, and resized to 256 ⇥ 256. The variance

of the Gaussian is set to � = 1.5 with an output heatmap size of 64 ⇥ 64. The

learning rate is set to 10�4, and decreased to 10�5 at 80K iterations, to 10�6 after

100K iterations and stopped at 120K iterations.

Training time. Training was performed on four NVIDIA GTX Titan GPUs

using a modified version of the Ca↵e framework [Jia, 2013] with multi-GPU sup-

port. Training the network from scratch took 3 days.

6.3 Heatmap Network with Optical Flow

With the above heatmap network, we can use the same idea as in Chapter 5 in the

context of deep nets: use optical flow to warp pose predictions from neighbouring

frames. These warped heatmaps represent a strong set of ‘expert opinions’ (with

corresponding confidences) for frame t, from which joint positions can be more
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Single input frame

conv1

conv2

conv3

conv4

conv6

conv7

conv8 (output)

conv5

Figure 6.7: Sample activations for convolutional layers. Neuron activa-
tions are shown for three randomly selected channels for each convolutional layer
(resized here to the same size), with the input (pre-segmented for visualisation
purposes) shown above. Low down in the net, neurons are activated at edges in
the image (e.g . conv1 and conv2); higher up, they start responding more clearly
to body parts (conv6 onwards). The outputs in conv8 are shown for the right
elbow, left shoulder and left elbow.

precisely estimated than when only using a single heatmap.

We further show that a parametric pooling of these warped heatmaps can be

learnt, e↵ectively learning how to weigh the expert opinions for di↵erent neigh-
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Figure 6.8: Deep expert pooling architecture for pose estimation. The
network takes as an input all RGB frames within a n-frame neighbourhood of
the current frame t. The fully convolutional Spatial ConvNet (consisting of 8
convolutional layers) predicts a confidence heatmap for each body joint in these
frames (shown here with di↵erent colour per joint). These heatmaps are then
temporally warped to current frame t using optical flow. The warped heatmaps
(from multiple frames) are then pooled with another convolutional layer (the
temporal pooler), which learns how to weigh the warped heatmaps from nearby
frames. The final body joints are selected as the maximum of the pooled heatmap
(illustrated here with a skeleton overlaid on top of the person).

bouring frames. This is in contrast to Chapter 5, where we simply summed the

warped heatmaps.

We show that this method outperforms all other methods in this thesis by a

large margin.

Related work. Temporal information in videos was initially used with ConvNets

for action recognition [Simonyan and Zisserman, 2014], where optical flow was

used as an input feature to the network. Following this work, we and [Jain

et al., 2014b] investigated the use of temporal information for pose estimation in
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a similar manner, by inputting flow or RGB from multiple nearby frames into

the network, and predicting joint positions in the current frame. However, pose

estimation di↵ers from action recognition in a key respect which warrants a dif-

ferent approach to using optical flow: in action recognition the prediction target

is a class label, whereas in pose estimation the target is a set of (x, y) positions

in the image. Since the targets are positions in the image space, one can use

dense optical flow vectors not only as an input feature but also to warp predicted

positions in the image. To this end, our work explicitly predicts joint positions

for all neighbouring frames, and temporally aligns them to frame t by warping

them backwards or forwards using tracks from dense optical flow. This e↵ectively

reinforces the confidence in frame t with a strong set of ‘expert opinions’ from

neighbouring frames, from which joint positions can be more precisely estimated.

6.3.1 Deep expert pooling architecture

Figure 6.8 shows an overview of our ConvNet architecture. Given a set of input

frames within a temporal neighbourhood of n frames from a frame t, a spatial

ConvNet regresses joint confidence maps (‘heatmaps’) for each input frame sep-

arately. These heatmaps are then individually warped to frame t using dense

optical flow. The warped heatmaps (which are e↵ectively ‘expert opinions’ about

joint positions from the past and future) are then pooled into a single heatmap

for each joint, from which the pose is estimated as the maximum.

Given the heatmaps from the Spatial ConvNet from multiple frames, the heatmaps

are reinforced with optical flow. This is done in three steps: (1) the confidences
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from nearby frames are aligned to the current frame using dense optical flow;

(2) these confidences are then pooled into a composite confidence map using an

additional convolutional layer; and (3) the final upper body pose estimate for a

frame is then simply the positions of maximum confidence from the composite

map. Below we discuss the details of the first two steps.

Step 1: Warping confidence maps with optical flow. For a given frame t,

as in Chapter 4, pixel-wise temporal tracks are computed from all neighbouring

frames within n frames from ((t�n) to (t+n)) to frame t using dense optical flow,

and these optical flow tracks are used to warp confidence values in neighbouring

confidence maps to align them to frame t. In practice, single-frame optical flow

is computed for all consecutive frames in the video; given a frame t, the flow

from (t� n) to t is then simply obtained as a sum of the flow vectors at frames

(t � n) . . . (t � 1) (and is then used to perform the warping separately for each

neighbouring frame).

Step 2: Pooling the confidence maps. The output of Step 1 is a set of

confidence maps that are warped to frame t. From these ‘expert opinions’ about

the joint positions, the task is first to select a confidence for each pixel for each

joint, and then to select one position for each joint. One solution, as described

in Chapter 4, would be to simply average the warped confidence maps. However,

not all experts should be treated equally: intuitively, frames further away (thus

with more space for optical flow errors) should be given lower weight.

To this end we learn a parametric pooling layer that takes as an input a set of
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warped heatmaps for a given joint, and as an output predicts a single ‘composite

heatmap’. The input to this layer is a i ⇥ j ⇥ t heatmap volume, where t is

the number of warped heatmaps (e.g . 31 for a neighbourhood of n = 15). As

the pooling layer, we train a 1 ⇥ 1 kernel size convolutional layer for each joint.

This is equivalent to cross-channel weighted sum-pooling, where we learn a single

weight for each input channel (which correspond to the warped heatmaps). In

total, we therefore learn t⇥ k weights (for k joints).

6.3.2 Implementation details

A temporal neighbourhood of n = 15 is input into the parametric pooling layer.

Optical flow is computed using FastDeepFlow [Weinzaepfel et al., 2013] with Mid-

dlebury parameters. For training the network, we first pre-train the HeatmapNet,

then attach the pooling layer and backpropagate through the whole network. The

warping is implemented as a Ca↵e layer.

6.4 Experiments

We first define the evaluation protocol and details, then present comparisons to

alternative network architectures, then provide an in-depth analysis of alternative

CoordinateNet architectures, and finally give a comparison to state of the art.

Example predictions of the HeatmapNet are shown in Figures 6.15, 6.18, 6.20

and 6.21.
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6.4.1 Evaluation protocol and details

Evaluation protocol. In all pose estimation experiments we compare the es-

timated joints against frames with manual ground truth. We present results as

graphs that plot accuracy vs distance from ground truth in pixels. A joint is

deemed correctly located if it is within a set distance of d pixels from a marked

joint centre in ground truth. Unless otherwise stated, the experiments use d = 6.

Experimental details. All frames of the videos are used for training (with

each frame randomly augmented as detailed above). The frames are randomly

shu✏ed prior to training to present maximally varying input data to the network.

The hyperparameters (early stopping etc.) are estimated using the validation

set.

6.4.2 Net architecture comparison

Figure 6.9 shows results for our methods on wrists in the BBC Pose and Extended

BBC Pose datasets. With the HeatmapNet, we observe a significant boost in per-

formance (6.6% – 79.6% to 86.1% at d = 6) by automatically obtaining additional

labelled training samples using the tracker from Chapter 4. In contrast, the Co-

ordinateNet is unable to make e↵ective use of this additional training data.

We observe a further boost in performance from using optical flow (2.6% –

86.1% to 88.7% at d = 6). Figure 6.10 shows the learnt pooling weights. We see

that for this dataset, as expected, the network learns to weigh frames temporally
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Figure 6.9: Net performance comparison for wrists on (Extended) BBC
Pose. CoordinateNet is the network from the previous section; HeatmapNet is
the heatmap network; and HeatmapNet Flow is the heatmap network with the
parametric pooling layer. ‘Extended’ indicates that the network is trained on
Extended BBC Pose instead of BBC Pose. We observe a significant gain going
from CoordinateNet to HeatmapNet; for the HeatmapNet from using additional
(automatically labelled – see Chapter 3) training data, and a further boost from
using optical flow information (and selecting the warping weights with the para-
metric pooling layer). Plots show accuracy per joint type (average over left and
right body parts) as the allowed distance from manual ground truth is increased.

close to the current frame higher (presumably because they contain less errors in

optical flow).

Figure 6.11 shows a comparison of di↵erent pooling types (for cross-channel

pooling). We compare learning a parametric pooling function to sum-pooling

and to max-pooling (maxout Goodfellow et al. [2013]) across channels. As ex-

pected, parametric pooling performs best, and improves as the neighbourhood

n increases. In contrast, results with both sum-pooling and max-pooling de-

teriorate as the neighbourhood size is increased further, as they are not able

to down-weigh predictions that are further away in time (and thus more prone
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Figure 6.10: Learnt pooling weights for BBC Pose with n = 15. Weights
shown for the right wrist. The centre frame receives highest weight.

to errors in optical flow). As expected, this e↵ect is particularly noticeable for

max-pooling.

As shown in Figure 6.12, we found the CoordinateNet to perform badly for

wrists, but, for this particular dataset, to perform well for elbows and shoulders

(not shown), which move less, and thus are easier to learn. We therefore use this

network for elbows and shoulders in Figure 6.13.

We also evaluate the e↵ect of pre-segmenting the foreground of the video with

the HeatmapNet in Figure 6.12. Foreground segmentation makes no di↵erence

for wrists, but using foreground segmentations leads to a boost for elbows, and

a small boost for shoulders.

The HeatmapNet and CoordinateNet di↵er in two ways: (i) loss target (heatmap
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Figure 6.11: Comparison of pooling types. Results are shown for wrists in
BBC Pose at threshold d = 5px. Parametric pooling (learnt cross-channel pooling
weights) performs best.

vs coordinates), and (ii) network architecture ([Sermanet et al., 2014] vs the new

heatmap architecture). We note here that we also observed a significant boost in

performance when ‘convolutionising’ the CoordinateNet architecture (replacing

the last fully-connected layers with 1⇥1 convolution layers, reducing max-pooling

and changing the target to a heatmap), but this did not obtain as good perfor-

mance as our HeatmapNet architecture.

Failure modes. The main failure case occurs when there are multiple modes

in the heatmap, and the wrong one is selected (shown in Figure 6.19). This could

be addressed by adding a spatial model on top of the heatmap net.
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Figure 6.12: Net performance comparison for CoordinateNet, Heatmap-
Net, HeatmapNet without foreground segmentation (HeatmapNet
Noseg), and HeatmapNet with optical flow (HeatmapNet Flow). For
wrists, HeatmapNet with and without foreground segmentations perform equally
well (the lines in the graph cover each other). Results are shown for Extended
BBC Pose. Plots show accuracy per joint type (average over left and right body
parts) as the allowed distance from manual ground truth is increased.

6.4.3 In-depth evaluation of CoordinateNet architectures

We will next report a series of experiments on the CoordinateNet architecture.

Table 6.1 shows comparisons to CoordinateNets with di↵erent number of input

frames, input representations, levels of preprocessing and pretraining. We next

discuss these results in detail.

1. Ridge regression from ImageNet fully-connected layer features.

ConvNets trained on ImageNet have been shown to generalise extremely well

to a wide variety of classification tasks [Chatfield et al., 2014, Razavian et al.,

2014, Zeiler and Fergus, 2014]. Often the state of the art can be achieved by

simply using the output from one of the fully connected layers as a feature. Here

we investigate the performance of this approach for pose estimation.
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We extract features from the last fully connected layers of a network trained on

ImageNet (a 4096 dimensional feature) applied to the original BBC TV broadcast

dataset, and learn a ridge regressor. As shown in Table 6.1(row 1), this performs

poorly. This implies that these features that are extremely powerful for various

real-world image classification tasks may not be quite as powerful when it comes

to predicting precise locations of parts with high appearance variation in an

image.

2. ImageNet pretraining/fine-tuning. Here we first pretrain network weights

on ImageNet ILSVRC-2012, and then fine-tune them on BBC pose. This performs

better than ridge regression from the output of the fully connected layers, but

still does not match the performance when the network is trained from scratch.

3. Single mean image. We investigate using a single mean image for all train-

ing and testing (instead of our idea of using a per-video mean). When using a

single mean image computed o↵ the whole dataset, the average evaluation mea-

sure drops from 72.0% to 57.6%. The drop is caused by nearly completely failed

tracking in some test videos. The network overfitted to the backgrounds in the

training data, and did not generalise to videos with di↵erent static backgrounds

(as is the case for some of the test videos).

4. Smaller ConvNet. We compare the CoordinateNet architecture to a

smaller (and slightly faster) network (set up with same architecture as the “CNN-

M” network in [Chatfield et al., 2014] – i.e., same depth as our other network,
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Training Aug Multi Seg Head Wrists Elbows ShouldersAverage
Last only X 15.4 5.8 8.4 18.3 12.0
FT all X 95.6 44.0 53.6 80.8 68.5
Scratch 94.3 52.1 51.9 87.9 71.5
Scratch X 95.9 47.1 56.0 89.1 72.0
Scratch X X 95.6 50.1 58.1 89.5 73.3
Scratch X X 96.1 58.0 66.8 91.2 78.0

Table 6.1: Evaluation of di↵erent CoordinateNet architectures. The eval-
uation measure is the percentage of predictions within 6 pixels from ground truth.
‘Scratch/Last only/FT all’ refer to training from scratch/training the last layer
from scratch (keeping the rest of the ImNet-pretrained network fixed)/finetuning
all layers of an ImNet-pretrained network; ‘Aug’ to training time augmentation;
‘Multi’ to using multiple input frames; and ‘Seg’ to using an input representation
with the foreground pre-segmented.

“CNN-S”, but with fewer parameters). This performs slightly worse than the

larger network used in this work (70.4% vs 72.0%).

5. No training augmentation. As shown in Table 6.1(row 3), training aug-

mentation yields a small improvement over no training augmentation (using the

centre crop of the image only).

6. Multi-frame net. Here we test the improvement from using multiple in-

put frames. Table 6.1(row 5) shows a consistent performance improvement over

wrists, elbows and shoulders, with a particularly noticeable improvement in wrist

predictions. The head predictions are slightly worse, likely because the head is

fairly stationary and hence does not benefit from the additional temporal infor-

mation.

The multi-frame network has two parameters: the number of input frames m

(how many frames are used as input for each pose estimate) and the temporal
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spacing t between the input frames (time between each of the n input frames).

In a parameter optimisation experiments we searched over m = {1, 3, 5} and

t = {1, 2, 3, 5, 8, 10, 15, 25} on the validation set. m = 3 and t = 1 (three input

frames with one-frame time spacing) were selected as the optimal parameters.

We also explored using di↵erence images (subtracting the current frame from the

additional input frames), however this did not improve performance.

7. Foreground-segmented input. We test our approach with the input rep-

resentation described in Chapter 4, where we pre-segmented the foreground of the

input frames, and black out the background. As shown in Table 6.1(row 6), even

though our method does not require foreground segmentations, it does benefit

from using them. On the downside, using them would require manual tuning of

segmentation parameters and significantly slow down the runtime (from 100fps

to around 5fps).

6.4.4 Comparison to previous work

We next turn to comparing all our network architectures to previous work.

BBC Pose. Figure 6.13 shows a comparison to state of the art on the BBC

Pose dataset. We compare against all previous reported results on the dataset.

These include [Buehler et al., 2011]; the Random Forest from Chapter 4; the

Sequential Forest from Chapter 5; and [Yang and Ramanan, 2013]’s deformable

parts-based model.



6.4. Experiments 148

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 [
%

]

Distance from GT [px]

Head

 

 

Buehler et al. (2011)
RF (Chapter 4)
SF (Chapter 5)
Yang & Ramanan (2013)
HeatmapNet+CoordinateNet

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 [
%

]

Distance from GT [px]

Wrists

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 [
%

]

Distance from GT [px]

Elbows

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 [
%

]

Distance from GT [px]

Shoulders

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 [
%

]

Distance from GT [px]

Average

Figure 6.13: Comparison to previous work. We outperform all previous
work by a large margin; notice particularly the performance for wrists, where we
outperform the best competing method by over 10% at d = 6. Our method
(HeatmapNet+CoordinateNet) uses CoordinateNet Extended for elbows and
shoulders, and HeatmapNet Flow Extended for head and wrists. CoordinateNet
uses Extended BBC Pose for training; Buehler et al ., RF, SF and Yang & Ra-
manan use BBC Pose. Plots show accuracy per joint type (average over left and
right body parts) as the allowed distance from manual ground truth is increased.
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Figure 6.14: Comparison to state of the art on Poses in the Wild. Plot
shows accuracy for wrists as the allowed distance from manual ground truth is
increased. We note that our method outperform state of the art by a large margin
(12% at d = 10).

We outperform all previous work by a large margin, with a particularly notice-

able gap for wrists (10% improvement compared to SF at d = 6). Our method

results on average in much better constrained poses and a significantly higher area

under the curve, without requiring any of the video-specific manual segmentation

algorithm tuning (as in Chapters 4 and 5) or manual annotation (as in [Buehler

et al., 2011]). We hypothesise that the better constrained poses are due to the

ConvNet learning constraints for what poses a human body can perform (i.e.,

the constraints of the human kinematic chain). Further, the ConvNets rarely

predicts incorrect joint positions in the background (Figure 6.17 shows examples

of corrected frames). We conjecture that this is due to the high capacity of the

model, which enables it to learn to ignore any pixels in the background.
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Figure 6.15: Example predictions on a variety of videos in Poses in the
Wild (HeatmapNet).

Poses in the Wild. Figure 6.14 shows a comparison to the state of the art

on Poses in the Wild. We replicate the results of the previous state of the art

method using code provided by the authors Cherian et al. [2014]. We outperform

the state of the art on this dataset by a large margin (by 12% at d = 10).

6.4.5 Computation time

Figure 6.16 shows a comparison of the computation time of our methods to

previous work. The computation times are measured on a 16-core 3.3GHz Intel

Xeon E5-2667 CPU and a GeForce GTX Titan GPU. We improve by an order

of magnitude over previous methods using the same CPU. If we instead predict

with a single GPU, performance increases by yet another order of magnitude.
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Figure 6.16: Computation time. Comparison of computation times versus the
method in Chapter 4 and [Buehler et al., 2011]. Note that the reliable semi-
automatic method of Buehler et al . is o↵ the scale as computing a pose for a
single frame takes around 100s. Our method outperforms previous methods by
over an order of magnitude using the same hardware. Using a single GPU instead
of CPUs increases speed by another order of magnitude.

6.5 Conclusion

We have presented two types of convolutional networks, one that regresses coor-

dinates and another that regresses confidence maps. We have shown that both

of these significantly outperform the trackers in earlier chapters, and that com-

bining them further improves performance. Finally, we have demonstrated how

a parametric pooling layer can be used in conjunction with optical flow to ef-

fectively learn to ‘pool confidence’ from neighbouring frames, yielding further
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Figure 6.17: Example test set frames comparing the CoordinateNet
pose estimates to Chapter 4. The pose estimates here are much better lo-
calised.
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Figure 6.18: Example predictions on two videos in Poses in the Wild
(HeatmapNet). Predictions and the corresponding heatmaps are shown.

improvements upon the performance of the heatmap network.

In the work on optical flow, we have demonstrated the idea of reinforcing po-

sition predictions for the application of human pose estimation. However, we

note that this idea is more generally applicable to predicting positions of arbi-

trary objects in videos: for other objects (than human shoulders, elbows, wrists

and head), confidences from neighbouring frames can likewise be propagated to

reinforce predictions.
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Figure 6.19: Failure cases. As shown, failure cases contain multiple modes for
the same joint in the heatmap (and the wrong mode has been selected). This
could be addressed with spatial model.
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Figure 6.20: Example predictions on ChaLearn (HeatmapNet Flow).
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Figure 6.21: Example predictions on BBC Pose (HeatmapNet Flow).
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Chapter 7

Learning Sign Language by

Watching TV

In this chapter, we show that, given the accurate upper-body tracker from Part I,

we can learn sign language automatically from TV broadcasts using the weak

supervision from subtitles.

In particular, we show that we can learn signs by using an English word to se-

lect a set of subtitles (and associated videos) that contain the word (the positive

sequences) and another set of videos that do not contain the word (the nega-

tive sequences), and then looking for signs that occur frequently in the positive

sequences, but not in the negative sequences.

This is however challenging in practice because the subtitle supervision is both

weak (in temporal alignment: a sign (8–13 frames) can be anywhere in the positive

sequences (400 frames)), and noisy (a word occurring in the subtitle only implies
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the sign is usually signed (in about 60% of cases)).

To solve this sign-subtitle word correspondence problem, we make the following

contributions:

1. Multiple Instance Learning (MIL) for automatically extracting

signs. We develop a novel MIL [Dietterich et al., 1997, Maron and Lozano-

Pérez, 1998] method using an e�cient discriminative search, which determines

a candidate list for the sign with both high recall and precision. The training

data here are visual descriptors (hand trajectories), with weak supervision from

subtitles. (Section 7.2)

2. Mouthing for isolating and learning signs. We show that, somewhat

counter-intuitively, mouth patterns are highly informative for isolating words in

a language for the Deaf, and their co-occurrence with the hand motion in signing

can be used to significantly reduce the correspondence search space. This is

because signers often mouth the word that they are signing, which is an important

cue that has been overlooked in previous work. (Section 7.1)

Our method (shown applied on an example video in Figure 7.1) consists of

three steps: (i) the search space for correspondences is significantly reduced by

detecting mouth movement, and filtering away irrelevant temporal intervals (ones

that do not contain mouth movement) ; (ii) candidates for the signs are obtained

using an e�cient discriminative search (based on temporal correlation scores)

over all remaining sequences; and finally (iii) these candidates are selected or

rejected using the MIL Support Vector Machine (MI-SVM [Andrews et al., 2002])
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framework. Figure 7.2 describes this processing pipeline in more detail.

In evaluations, we demonstrate that with the reduction in search space and

discriminative learning, simple features (namely only hand trajectories) are suf-

ficient to successfully extract the signs. We show that this method achieves

superior results to previous work, and does so at a much lower computational

cost.

Related work. The closest work to ours is [Buehler et al., 2009] (described

in Section 2.1.6) who used similar weak and noisy supervision from subtitles.

However, their method does not exploit mouth motion, and relies on performing

a computationally expensive brute force search over all temporal windows – here

we avoid both the exhaustive search and also the necessity to represent hand

shape and orientation as they did.

7.1 Pruning the Correspondence Search Space

using Mouthing

A key contribution of this chapter is the discovery that mouth patterns are very

helpful for aligning signs. This is because the Deaf in most countries commonly

use their mouth to express the lip pattern of the English (or other written/spoken

language) equivalent word that they are signing, also known as ‘mouthing’. This

mouth information is valuable in two distinct ways: (i) knowing that the Deaf

mouth the word in the majority of signs, one can discard frames where the mouth
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The snow monkeys are living up to their name.

and has only just come out of her den beneath the snow.

In Japan, this year’s babies are seeing  snow  for the first time.

They’ve got a lot of travelling to do.

-other-

-other--other--other-

Figure 7.1: Learning signs from co-occurrences of subtitle text, mouth
and hand motion. The top three rows are positive subtitle sequences which
contain the text word and sign for ‘snow’. The final row is an example of a neg-
ative subtitle sequence which does not contain ‘snow’. Signs are learnt from this
weakly aligned and noisy data. A fixed size temporal window is slid across the
frames in which mouth motion occurs (blue). The rest of the sequence can be
ignored, thus reducing the temporal search space. Candidate signs are proposed
by a discriminative MIL search using temporal correlation. A subset of these
candidates (red) are used to initialise a MI-SVM, resulting in the final correspon-
dence matches (green). The red and green lines on the signer show the detected
limbs and head.
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Preprocess all videos
      for each frame
            – segment signer and locate signer’s head and hands (Part I)
            – classify mouth as open/closed and extract mouth SIFT
                     descriptor (Sect 7.3.2)
        output: hand and head positions, mouth open/closed probability 
                and mouth SIFT descriptor

For a particular word, e.g. ‘snow’
      – find positive & negative sequences using subtitles (Sect 7.3.1)
      – obtain temporal windows by sliding a fixed-size window over 
               frames with an open mouth in each sequence (Sect 7.1)
      – extract feature vector for each temporal window (Sect 7.3.3)
      – find sign candidates using discriminative MIL search (Sect 7.2.1)
      – train a MI-SVM classifier with initial candidates (Sect 7.2.2)
        output: instances of the sign ‘snow’ 

Figure 7.2: Sign Extraction pipeline. The preprocessing of videos (above)
and the learning for a given word (below) are shown.

is not open, and thus considerably narrow down the search space when matching

signs; and, to a lesser extent, (ii) the similarity of lip patterns across repetitions

of the same sign can be used as an additional cue for matching di↵erent instances

of the same sign.

In order to use the mouthing information to discard frames where the signer is

not speaking, we train a per-frame classifier for predicting whether the mouths are

‘speaking’ vs ‘not speaking’ (details in Section 7.3.2). The output of this classifier

(after temporal smoothing and thresholding – see Section 7.3.2) is used to prune

the search space (i.e. filtering away frames in which the signer is predicted not

to be mouthing, and therefore likely to not be signing). The search space that

remains after this step is marked blue in Figure 7.1.

This pruning results in a substantial decrease in the number of temporal win-
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dows that need to be considered for correspondences. We make this reduction

more concrete with an example: in the sequences of Figure 7.1, the search space is

l = 400 frames, and sign correspondences are searched for with a fixed-size tem-

poral window of w = 13 frames. Without using mouthing information, this would

yield n = l � w + 1 = 388 candidate temporal windows per positive sequence.

However, by cutting this search space down to three l = 25 frame windows using

mouthing information, the number of candidate windows drops 90% to 39. This

order-of-magnitude reduction in search space not only improves the ‘signal-to-

noise’ ratio in the correspondence search, but also considerably speeds up the

search.

7.2 Automatic Sign Extraction with Multiple

Instance Learning

Given a target word occurring in the subtitles, and the pruning method that uses

mouthing, we show here how to extract examples of the corresponding sign.

The key idea is to search for signs that are common across the positive sequences

(the sequences where the target word occurs in the subtitles), but uncommon

in negative sequences (where the target word doesn’t occur in the subtitles).

Since the positive labels are on a subtitle sequence level rather than on a win-

dow level, the task can naturally be formulated as a Multiple Instance Learning

(MIL) [Dietterich et al., 1997, Maron and Lozano-Pérez, 1998] problem, as shown

in Figure 7.1. MIL is a variation of supervised learning for problems that have
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incomplete knowledge about the training set’s labels – unlike supervised learn-

ing in which each training instance has a label, in MIL the labels are on a bag

level, where each bag consists of instances. If a bag is positive, then at least one

instance in the bag is positive. If it is negative, then no instance in the bag is

positive.

In our learning scenario, the MIL ‘bags’ are the sequences, and the ‘instances’

are features computed from fixed sized temporal windows within the temporal

intervals in which the signer is mouthing. The positive bags are from positive

sequences, and negative bags from negative sequences. Details of the features used

as an input to this learning (that describe the fixed sized temporal windows) are

given in Section 7.3.3.

To give a concrete example demonstrating the di�culty of solving this problem,

imagine a dataset in which the word ‘snow’ occurs in 30 subtitles. This yields

30 positive sequences, each around 400 frames long. Out of these 400 frames,

empirically on average six subsets (each 30 frames long, examples shown in blue

in Figure 7.1) contain mouthing. With a temporal window size of 13 (which was

used in this work), this yields 108 temporal windows for each positive sequence, or

in total 3,240 temporal windows for all positive sequences. However, an additional

challenge is posed by the fact that ‘snow’ is only signed in 10 out of the 30

sequences (i.e., the annotation is weak). In this case, our task is to find the 10

out of 3,240 temporal windows that contain the target sign. With a ‘signal-to-

noise’ ratio of less than 0.4%, this is a very challenging problem even when using

mouthing to cut down the search space (in this example, mouthing reduced the
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number of temporal windows from 11,640 to 3,240).

The MIL method proceeds in two stages (each described below): (i) finding

good candidates for the target sign temporal windows using temporal correlation

scores, and (ii) refining this ‘candidate list’ using MI-SVM. Example outputs

from these two steps are given in Figure 7.1.

7.2.1 Multiple instance learning with a discriminative tem-

poral correlation score-based search

The method for finding candidate temporal windows relies on computing temporal

correlation scores between the fixed-size temporal windows.

The input is a set of feature vectors {xi}, each representing the temporal motion

of the hands and mouth over a fixed sized temporal window. Each vector xi is

composed of blocks covering aspects of the signing of a given temporal window,

such as lip motion and distance between the hands (e.g . with window size 13

and feature dimensionality D, each feature vector is 13 ⇥ D-dimensional). The

vector is normalised such that the dot product xi · xj between two such vectors,

xi and xj, gives the temporal correlation score of the ‘signals’ (lip motion, hand

motion) over the two temporal windows (Section 7.3.3 gives the details on the

feature vector). The temporal correlation measures how similar the hand and

lip trajectory is between the two windows, with a value of 1 indicating perfect

correlation, and �1 indicating anti-correlation.

The task is to determine for each feature vector xi how likely it is to be the
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target sign. This is accomplished by using each xi to classify the positive and

negative sequences. The idea is that if xi is actually the sign then its correlation

(i.e. xi · xj) with some vector xj in a positive sequence will be higher than with

any vector xk in a negative sequence. To this end, for each xi all sequences

(both positive and negative) are ranked using the ‘classifier’ score xi · xj, and

the performance of the classifier is assessed using the area under its ROC curve

(AUC). For the purpose of annotating the vectors when computing the ROC

curve, any vector in a positive sequence is deemed positive (+1), and any vector

in a negative sequence deemed negative (�1). A good candidate temporal window

xi will rank the positive sequences first, and thus have a higher AUC, than a poor

candidate. Note that the annotation of the ‘positives’ here is noisy, since only a

fraction of the windows in positive sequences actually contain the sign.

In summary, we measure the ‘quality’ of each temporal window in the posi-

tive sequences using the AUC of its ROC curve – a form of one shot-learning.

The windows are then ranked according to their AUC scores, and this ‘ranked

candidate list’ is used below for initialising and training the MI-SVM.

Discussion. Before temporal correlation scores are computed, the features x

are whitened to x̂ = ⌃�1/2(x � µ), where ⌃ is the cross-correlation matrix, x

is an L2-normalised input feature vector and µ is the mean of the input feature

vector (over space-time features). Whitening e↵ectively ‘equalises’ the features,

thus making feature variations more comparable, leading to better learning.

This MIL initialisation method is not limited to applications in sign language



7.2. Automatic Sign Extraction with Multiple Instance Learning 167

– the same idea can be used to initialise MIL in other weakly supervised tasks.

7.2.2 Temporal correlation-based MI-SVM

In MI-SVM, given the positive and negative bags as input, a classifier w is learnt

to select the positive instances x from the positive bags by an algorithm that

alternates between: (i) selecting the positive instance in each bag as those with

maximum score w ·x, and (ii) standard SVM training using the selected positives

and all negative instances. More formally, given a set of input temporal windows

x1, . . . , xn grouped into bags B1, . . . ,Bm according to which positive/negative

video subsequence they belong to, where each bag BI is associated with a label

Y I 2 {�1, 1}, we optimise

min
w,b,⇠

1

2
kwk2 + C

X

I

⇠ I (7.1)

s.t. 8I : Y I max
i2I

(hw,xii+ b) � 1� ⇠ I , ⇠ I � 0 (7.2)

where i are indices for instances and I are indices for bags.

However, a good initialisation is necessary for the algorithm to succeed. The

ranked candidate list from Section 7.2.1 is used to first initialise and then train

the MI-SVM. In detail, the shortlist uses the top 20% highest-ranked candidate

windows as positives. The shortlist candidates are allocated to their positive

sequences and a weight vector w is learnt using the MI-SVM algorithm, where the
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top ranked candidates in each sequence are used for initialisation. The candidates

with maximum SVM score in each sequence form the final result. A separate MI-

SVM is trained and evaluated for each target word.

Training in this manner means that the weight vector is learnt from instances

with far fewer false positives (higher ‘signal-to-noise’). It is demonstrated in

Section 7.4.2 that this substantially improves its performance (compared to MI-

SVM learning from all windows directly). Figure 7.1 shows the selection ‘in

action’ on three positive subtitle sequences.

Discussion. The weight vector w is learnt discriminatively and thus can learn

to suppress part of the feature vector. For example, if the distance between

the hands carried no discriminative information for a particular set of positive

sequences, then this block of the feature vector need not be selected. The vector

w is a stronger classifier than the exemplar LDA classifier above, since w uses

multiple positive samples for training, rather than being constructed from only

a single sample.

7.3 Implementation Details

This section describes the implementation details of how training data (posi-

tive/negative sequences, and a feature vector based on upper-body joint loca-

tions and mouth features) are automatically generated from subtitles and video

material.
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First, Section 7.3.1 provides details of how the video is divided into ‘positive’

(likely to contain target sign) and ‘negative’ (unlikely to contain the target sign)

sets; then Section 7.3.2 discusses mouth features; and finally, Section 7.3.3 gives

a summary of the full feature vector used to find correspondences between signs.

7.3.1 Text processing: extracting positive and negative

sequences

Each subtitle text consists of a short text, and a start and end frame indicating

when the subtitle is displayed. The subtitles are stemmed (common inflections

e.g . “s”, “ed”, “ing” are removed) and stop words are filtered away.

Positive sequences. A positive sequence is extracted for each occurrence of

the target word in the subtitles. Since the alignment between subtitles and signs

is very imprecise due to latency of the signer (who is translating from the sound-

track) and di↵erences in language grammar, some ‘slack’ is padded to the se-

quence window. Given a subtitle where the target word appears, the frame range

of the positive sequence is defined as from the start of the previous subtitle to the

end of the next subtitle. This results in sequences of about 400 frames in length.

In contrast, signs are generally 7–13 frames long.

Negative sequences. Negative sequences are extracted by searching for subti-

tles where the target word does not appear. This yields on average about 100,000

negative temporal windows per video.
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7.3.2 Mouthing classifier

To train the mouthing classifier, we first detect facial landmarks using the method

of [Everingham et al., 2006]. A similarity transform is then applied to the mouth

feature points to yield a scale, rotation and translation normalised mouth patch.

Given these mouth patches, a binary Chi-squared kernel SVM is trained to clas-

sify each such patch as mouthing / non-mouthing using Local Binary Pattern

(LBP) [Ojala et al., 2002] features (with cell size 8 extracted from the mouth

patch of size 32 ⇥ 52 pixels). The dimensionality of the feature vector is 1,392

per frame.

At test time, the SVM output scores are thresholded and temporally smoothed

with a Gaussian to yield windows in which mouth motion is detected (blue areas

in Figure 7.1). Details about training and performance of the mouthing classifier

are given in Section 7.4.2.

7.3.3 Feature vector for temporal windows

For each frame, we obtain the position of the signer’s head and hands (see Part I),

and a descriptor for the mouth shape (a 128-dimensional SIFT descriptor [Lowe,

1999] computed using the facial landmarks from Section 7.3.2).

The feature vector for each temporal window consists of features computed

from the position of the signer’s hands, and the SIFT descriptor of the mouth.

A number of feature blocks are computed based on the trajectory of the hands:

(i) the relative (x, y) coordinates of each hand compared to the position of the
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head, (ii) the di↵erences (x right � x left, y right � y left) in coordinates between the

two hands, and (iii) a vector describing the direction and magnitude of motion

between the first and last frame in the temporal window: (x last�x first, y last�y first).

In addition, the feature vector contains a block for the SIFT descriptor of the

mouth patch for each frame in the temporal window.

The feature dimension per frame is 134, out of which 128 is a SIFT describing

the mouth, and the remainder describes the joints. For a temporal window size

of 13, the total feature vector dimensionality is 1,746 (134⇥ 13, plus two vectors

that give the direction and magnitude of motion between the first and last frame

of each hand).

Each feature block is l2-normalised, so that xi · xj becomes the temporal cor-

relation between two temporal windows with feature vectors xi, xj. The entire

feature vector is a concatenation of all the l2-normalised blocks, and this is then

l2-normalised.

7.4 Experiments

We first describe the experimental setup (Section 7.4.1); then the performance

of the sign extractor and mouthing classifier are reported (Section 7.4.2); then

results are compared to the state of the art (Section 7.4.3); and finally the com-

putation time is discussed (Section 7.4.4).

The dataset used in the evaluation of this chapter is the sign extraction dataset

(Section 3.2.1), which consists of 35 videos, in total 30 hours of data, with 41
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manually ground truthed signs that spanning multiple videos.

7.4.1 Experimental setup

Evaluation measures. Given an English word, the goal is to identify many

examples of the corresponding sign. We use two evaluation measures: sign-level

(coarser) and instance-level measures. In the sign-level measure used by [Buehler

et al., 2009], the output is deemed a success if at least 50% of retrieved candidates

(maximum one per subtitle sequence) show the true sign (defined as a temporal

overlap of at least 50% with ground truth). In the instance-level measure, we

report precision and recall computed per word and then averaged across words.

Precision measures the percentage of retrieved windows that contain the correct

sign; recall measures the percentage of sign instances that are retrieved.

Train/test sets for mouthing classifier. The mouthing SVM classifier is

trained on the mouth LBPs (described in Section 7.3.2) of five unseen signers

that are not in the sign extraction dataset. Mouths were manually annotated as

either open or closed in 800 frames for each signer (4,000 frames in total). Testing

for the mouthing classifier is conducted on three randomly chosen signers in the

sign extraction dataset, each with 200 manually annotated frames (600 frames in

total).



7.4. Experiments 173

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
u

e
 p

o
si

tiv
e

 r
a

te
 (

re
ca

ll)

ROC (AUC: 99.13%, EER: 4.69%)

 

 

ROC
ROC rand.

Figure 7.3: ROC curve of the person-independent mouthing classifier.

7.4.2 Experiments

In this subsection the performance of the mouthing classifier is evaluated, the

sign extraction results are reported, and the advantages of using mouthing for

sign extraction, and initialisation for MI-SVM, are described.

Mouthing classifier. Figure 7.3 shows the ROC curve for the mouthing classi-

fier when trained and tested on di↵erent signers as described in Section 7.4.1. As

the ROC curve demonstrates, the classifier gives an impressively reliable measure

of whether the mouth is open or closed. On average, 71.2% of the search space

is discarded using this method, demonstrating its value.

Sign extraction results. The instance-level average precision is 57.1% and

recall is 78.0%. With the sign-level evaluation measure, the performance is 92.7%.

A more detailed set of results is given in Table 7.1. We achieve good results for a
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wide variety of signs: (i) signs where the hand motion is important (e.g . ‘snow’),

(ii) signs where the hand shape is particularly important (e.g . ‘jewish’ where the

hand indicates an imaginary beard), and even (iii) signs which are performed

in front of the face (e.g . ‘pork’), which makes detecting mouth motion di�cult.

MI-SVM suppresses the mouth part of the feature vector by assigning it a lower

w weight.

Advantages of using mouth-signing co-occurrences and MI-SVM ini-

tialisation. The importance of the components and stages of the algorithm is

evaluated next. If the mouthing classifier is not used for cutting down the search

space, some signs can be detected, but the overall results are much poorer. This

is reflected in the instance-level evaluation measure: average precision over 41

words drops to 17.8% and recall to 39.3%. The overwhelming majority of the

ground truth signs are mouthed, so using it to cut down the search space results

in only a minor loss of positive instances. If the initialisation step is omitted,

and MI-SVM is instead initialised with all windows from the positive sequences

(after search space reduction), results drop to 5.7% precision and 2.5% recall.

We have also qualitatively evaluated our method over the 1,000 words. For

more than half of the words, our method returns the correct sign one or more

times in the top 10 final temporal windows selected by MI-SVM.
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Sign #(pos) #(GT) TPm FPm TP 6m FP 6m
animal 12 9 6 4 0 11
antique 15 8 7 6 3 11
asian 11 9 5 2 1 10
bank 21 10 10 7 6 13
beacon 28 21 8 6 4 24
bear 14 10 2 2 1 13
beautiful 12 5 3 3 0 11
beef 15 8 7 7 3 10
bike 15 6 4 4 1 12
blood 15 4 3 2 2 8
buy 13 3 2 3 0 10
Chinese 33 11 11 11 0 28
chocolate 20 6 6 3 3 17
epigenome 20 13 7 9 7 13
fake 14 11 11 2 0 13
feel 12 8 6 3 3 8
gram 25 12 7 5 1 15
heart 14 5 4 4 0 10
heat 15 5 10 4 2 12
industry 19 9 9 4 4 15
jelly 11 1 4 4 4 4
jewish 27 14 14 5 8 11
kill 17 9 6 6 4 13
market 16 12 8 5 2 14
milk 10 6 4 4 1 7
pay 37 25 12 11 12 22
reindeer 15 9 5 5 2 13
rugby 11 7 5 4 2 11
school 13 5 3 2 1 10
science 18 10 6 5 1 17
sell 15 5 4 3 4 9
simple 12 10 3 1 0 11
snow 29 11 8 5 1 24
song 19 10 10 6 4 15
sound 26 5 5 2 2 21
target 23 4 4 4 2 21
vision 17 10 7 5 6 7
war 11 6 3 5 2 8
winter 23 12 7 7 2 21
work 22 14 3 3 2 17
year 32 8 7 6 4 26

Table 7.1: Ground truth and performance for 41 words. The first three
columns show statistics of the training data, and the remaining four columns
show the performance of the method on those words with (m) and without ( 6 m)
using the mouth classifier. #(pos) is the number of positive sequences for the
word in the same row. #(GT) is the number of times the sign actually occurs
in the positive sequences. The number of correctly detected signs in the positive
sequences is given in TP, while FP gives the number of incorrect detections.
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7.4.3 Comparison to previous publications

Direct comparison to previous works is not possible since we do not have access

to the same TV programmes with the same signs performed by the same signer.

Moreover, previous work used standard-definition TV broadcasts, where the res-

olution was not good enough to detect facial feature points reliably. However,

we show that our results are competitive when performing similar experiments to

those in [Buehler et al., 2009] (see Section 2.1.6) with a similar-sized vocabulary.

Using the sign-level evaluation measure, our 92.7% success rate far exceeds

Buehler et al .’s rate of 78% on the same number of signs. However, we must also

point out that this measure is only concerned with recall, and not precision. In

fact, although our method has a good recall, it has lower precision (i.e. higher

false positive rate) on the 41 word test set. This is to be expected given that

we are using less discriminative features than Buehler et al ., who also use hand

shape and hand orientation. However, our method is much simpler both in terms

of features and learning framework, and is extremely fast (⇡ 2min/word).

[Cooper and Bowden, 2009] detect the signs for 53.7% of 23 words in a 30 min

TV broadcast. The results are not directly comparable as di↵erent performance

measures are used, but we detect 92.7% of nearly twice as many words, at a

fraction of the computational cost.
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Figure 7.4: Example sequences for the signs “snow” (top) and “vision”
(bottom) performed by two di↵erent signers and learnt automatically.

7.4.4 Computation time

The following computation times are on a single core of a 2.4GHz Intel Quad Core

I7 CPU. Segmentations, joints and mouthing classifier scores for one frame are

computed in 0.3s (3fps). The runtime for the MIL initialisation step is on average

20s per subtitle word, and MI-SVM converges on average in 1min 30s, totalling

1min 50s per word. Initially there are on average 4,000 temporal windows, of

which the MIL initialisation step returns around 800 as a shortlist.

7.5 Conclusion

We have shown a framework for automatically learning a large number of signs

from sign language-interpreted TV broadcasts. Our method exploits co-occurrences

of mouth and hand motion to substantially improve the ‘signal-to-noise’ ratio in

the correspondence search. Moreover, we have proposed a principled method for
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initialising the correspondence search, which significantly improves performance.

We achieve superior results to those in previous work, with much simpler features

and a much lighter learning framework.

These ideas are not constrained to sign language. For the idea of using co-

occurrences to cut down the search space, co-occurrences of lip motion and speech

can be used to aid speech recognition [Bregler and Konig, 1994, Dupont and

Luettin, 2000, Petajan et al., 1988], and the vicinity of objects can be used to

aid human action recognition [Prest et al., 2012] (e.g . a phone close to human

and a pose with a hand close to the head can be used to detect that the action is

‘phoning’). Both the idea of exploiting co-occurrences and obtaining MIL tem-

poral correlation candidates by discriminative learning from a single exemplar

window could be applied to a variety of fields where weak supervision is avail-

able, such as learning actions [Laptev et al., 2008], gestures and names of TV

characters [Everingham et al., 2009].



Chapter 8

Learning Gestures from Weak

and Strong Supervision

We saw in Chapter 7 that it is possible to learn sign language using weak su-

pervision from subtitles. However, as discussed there, this subtitle supervision is

very weak and noisy, which makes learning from it di�cult.

In this chapter, we show that we can further improve upon this learning of

signs by combining the weak supervision with strong supervision from dictionaries

(such as sign language dictionaries). We further show that this method extends

beyond sign language, and present results on a dataset of Italian gestures.

The main idea of the chapter is showcased in Figure 8.1. Here, we have two

strongly supervised videos (dictionaries) with an example of each gesture, and

a large dataset of TV broadcasts with weak supervision from subtitles, which

contain some instances of the same gestures. In the dictionaries there is strong
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Figure 8.1: Learning gestures from strong and weak supervision. A
single strongly supervised training example from a dictionary is used to train a
one-shot learner. This one-shot learner is used to obtain additional training data
from a large weakly supervised gesture repository of another domain. These new
samples are used to ‘boost’ the one-shot learner with additional discriminative
power. Evaluations are carried out under further domain adaptation on another
strongly supervised dictionary dataset. Dashed line shows the baseline and the
solid lines show the proposed method.

supervision (but only a single example), whereas in the weakly supervised dataset

there are a lot of examples, which exhibit variations in people, expression, speed

– but there is only weak supervision, as the temporal interval is not tight.

We show that we can learn a much stronger classifier by using both the dictio-

nary and the weakly supervised videos compared to using either one alone.

Our method (described in Section 8.1) works in four main steps: (i) learn a

weak classifier from a dictionary (one-shot learning); (ii) use the weak one-shot

classifier to select further examples from a weakly supervised dataset; (iii) filter

away false matches by comparing the similarity of the hand shape of the examples

and dictionary entry (Section 8.3); and (iv) train a stronger classifier from the

remaining examples, which has more robustness to variations in gesturing speed,

person specifics etc. This is a form of semi-supervised learning, but since the

dictionary and weakly supervised videos are very di↵erent (di↵erent resolutions,
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people with di↵erent body shape, with gestures performed at significantly dif-

ferent speed), the a�nity function requires domain adaptation in going between

them (Section 8.2).

We evaluate the method on two large gesture datasets: one for sign language

(the extended sign extraction dataset in Section 3.2.2), and the other for Italian

hand gestures (ChaLearn in Section 3.2.4). In both cases performance exceeds

the previous best results, including the best skeleton-classification-only entry in

the 2013 ChaLearn challenge.

Related work. Most gesture recognition methods rely on strongly supervised

learning, which requires ground truthing large quantities of training data. To

avoid the expense of data labelling, recent works have attempted to learn ges-

tures at the other extreme – from single training examples using one-shot learn-

ing [Guyon et al., 2013]. However, given the vast variability in how gestures are

performed (and the variation in people and camera viewpoints), learning gener-

alisable models with so little supervision is challenging. An alternative is using

weak supervision as in Chapter 7; however, the supervision is quite weak and

noisy, making it di�cult to learn from it alone. Here we show that combining

both of these approaches (weak and one-shot supervision) is advantageous.
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8.1 Learning from Strongly Supervised Dictio-

naries and Weakly Supervised Videos

In this section we describe the method for learning gestures (and sign language)

from both strongly supervised dictionaries and weakly supervised videos.

This method takes as an input hand trajectories from both datasets which have

been temporally and spatially aligned. The method of obtaining hand trajectories

is described in Chapter 4, and the alignment method is described in detail in

Section 8.2 below.

In more detail, the method proceeds in four steps: (i) train a discriminative

gesture detector from the first dictionary, separately for each gesture; (ii) that

detector is then used to discover new samples of the same gesture in the weakly

supervised gesture reservoir – the search for the sample is restricted to a temporal

interval provided by the weak supervision; (iii) these new samples are used to train

what is e↵ectively a stronger version of the original one-shot gesture classifier;

and (iv) this strong classifier is evaluated on a second one-shot dictionary.

Given the two strongly supervised video dictionaries (one for training, the

other for evaluation) and a weakly labelled gesture reservoir, let �1
, �2 and ⌫

denote their respective features (here the hand trajectories). For example, �1 =

{�1
1, . . . , �

1
q, . . . } where �1

q is a variable-length vector (depending on the length of

the gesture video) of hand positions over all frames in the q

th gesture video of

dictionary 1.
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Imagining that we are learning a gesture for ‘snow’ in BSL (shown in Figure 8.2),

the four learning steps proceed as follows:

1. Train one-shot learner on strongly supervised dictionary. We first

train a discriminative one-shot gesture detector for ‘snow’ on the features of the

first dictionary (�1). To do this, we use a time-and-space-aligned gesture kernel

 (which we discuss in detail in Section 8.2) in a dual SVM to learn weights ↵

from

max
↵i�0

X

i

↵i �
1

2

X

jk

↵j↵kyjyk (xj,xk) 8i 0  ↵i  C

X

i

↵iyi = 0 (8.1)

where we set the learning feature to x = �1 (hand trajectories of the videos in

dataset �1), yi are binary video labels (1 for the ‘snow’ dictionary video, �1 for

others), and  (, ) is the kernel. This is the one-shot learning part of our method –

e↵ectively an exemplar SVM [Malisiewicz et al., 2011].

2. Use one-shot learner to extract training examples from weakly su-

pervised videos. We use the one-shot learner to discover new samples of ‘snow’

in the weakly supervised gesture reservoir (restricted to the temporal intervals

provided by the weak supervision). A very large number of samples in the reser-

voir are scored to find gestures that are most similar to ‘snow’ (and dissimilar to

the other gestures) in the first dictionary. This yields a vector of scores s
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s(⌫) =
X

i

↵iyi (xi,⌫) + b (8.2)

where ⌫ are the features for reservoir subsequences with a weakly supervised

label ‘snow’. Here, s(⌫) is a vector of scores of length |⌫| (the number of samples

in the weakly supervised sequences of the gesture reservoir). The top scored

samples represent gestures in the reservoir that are most similar to ‘snow’ in

the the first dictionary, but with high variability in space, time and appearance

(thanks to the time and space adaptations from Section 8.2).

3. Train a stronger classifier on a subset of the extracted training

examples. The top samples of s(⌫) (by score), along with a set of negative

samples from the gesture reservoir, are used to train a stronger version of the

original one-shot gesture classifier for ‘snow’ (the training details for this step

are given in Section 8.4). We do this by retraining (8.1) with this new training

set x = ⌫retrain (of cardinality around 2,000 samples). Due to only selecting the

top samples of the gesture reservoir for training, we develop resilience to noisy

supervision.

4. Evaluate the stronger classifier on another strongly supervised dic-

tionary. Finally, this stronger model is evaluated on the second dictionary by

ranking all gesture videos using the score s(�2) of the stronger classifier. This pro-

vides a measure of the strength of the classifier without requiring any expensive

manual annotation.
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Figure 8.2: Frames showing variation in gesture speed across two do-
mains (top and bottom). The example gesture shown here is ‘snow’ in BSL,
which mimics snow falling down. Although the frame rate is the same, the speed
at which the gestures are produced are considerably di↵erent.

8.2 Domain Adaptation of Hand Trajectories

A major challenge in gesture recognition is that not only are the gestures per-

formed by di↵erent people with di↵erent body shapes, but the same gestures

can be performed at very di↵erent speeds across domains and people. For two

datasets in this work, this is showcased in Figure 8.2).

We tackle this problem by measuring distance under domain adaptations in

both space and time. We next discuss the domain adaptations used to define this

kernel  that is used in the dual-form SVM in Section 8.1.

8.2.1 Time alignment

Dynamic Time Warping (DTW) [Sakoe, 1978, Sakoe and Chiba, 1970] is a pop-

ular method for obtaining the time alignment between two time series and mea-

suring their similarity. However, there have been problems incorporating it into

a discriminative framework (e.g . into kernels [Baisero et al., 2013, Gaidon et al.,
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2011, Shimodaira et al., 2001, Zhou and De la Torre, 2012]) due to the DTW

‘distance’ not satisfying the triangle inequality. As a result, it cannot be used

to define a positive definite kernel. Furthermore, it is unlikely to be robust as a

similarity measure as it only uses the cost of the minimum alignment.

In this work we use a recently proposed positive definite kernel, the Global

Alignment (GA) kernel [Cuturi, 2011, Cuturi et al., 2007]. In addition to being

positive definite, it has the interesting property of considering all possible align-

ment distances instead of only the minimum (as in DTW). The kernel computes

a soft-minimum of all alignment distances, generating a more robust result that

reflects the costs of all paths:

kGA(x,y) =
X

⇡2A(n,m)

e

�D
x,y(⇡) (8.3)

where D

x,y(⇡) =
P|⇡|

i=1 kx⇡(i) � y⇡(i)k denotes the Euclidean distance between

two time series x,y under alignment ⇡, and A(n,m) denotes all possible align-

ments between two time series of length n and m. In our case x,y are two time

series of spatially aligned human joint positions, i.e. the joint ‘trajectories’ of two

gestures that are being compared. By incorporating all costs into the kernel we

improve classification results compared to only considering the minimal cost.

8.2.2 Spatial alignment

Since the hands play an important role in gestures, knowing where the wrists are

is valuable to any gesture recognition method. However, an issue with human
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joint positions is that they are not directly comparable across domains due to

di↵erences in both position, scale and human body shape. We use two simple yet

e↵ective a�ne transformations, one global and another local in time, that allow

for translation and anisotropic scaling. This encodes a typical setup in gesture

datasets, where, for a particular gesture, the persons stay at roughly the same

distance from the camera (global transform), but may move slightly left or right

(local transform). The global transformation learns the anisotropic scaling and

translation, and the local transformation estimates an x translation, mapping

into a canonical frame in which poses from di↵erent domains can be directly

compared.

The global transform is computed from the median positions of the shoulders

and elbows (selected since they are comparable across videos) over the whole

video. The x translation is estimated locally from the median head and shoul-

der positions over a small temporal window (50 frames). Figure 8.3 shows a

visualisation of the transformation.

Even after spatial transformations, the absolute position for the gesture (rela-

tive to the torso) generally di↵ers slightly. We solve that by adding some ‘slack’

to allow for slight absolute position di↵erences. We do this by minimising the l2

distance between wrist trajectories (of the two videos that are compared) over a

small local square patch of width u = (dist. between shoulders)/10. Figure 8.4(c–

d) shows an example of the original and corrected positions.

The composition of the global and local transformations define the spatial trans-

formation �, i.e. �(x) is the mapping from the trajectory in the video to the
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Figure 8.3: Domain adaptation in space and time. Top: video sequence
from the gesture reservoir; Middle: automatic time alignments to another se-
quence from a one-shot learning domain; Bottom: domain-adapted (space and
time aligned) sequences, with the middle sequence overlaid on the top one. For
ease of visualisation the example only uses a dominant hand, so only the domi-
nant hand is matched (this is determined from the one-shot learning dictionary).
In most cases, the transformation involves both hands.

spatial canonical frame.

8.2.3 Final transformation kernel  

The final kernel is a composition of the the time alignment kGA and spatial

transformations �. This yields the final kernel:

 (x,y) = kGA(�(x),�(y)). (8.4)
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(a) (b) (c) (d)

(e) (f )

Figure 8.4: Human pose transformation across domains. (upper row) BSL
for ‘heart’ with overlaid wrist trajectory; (bottom row) BSL for ‘gram’. (a) and
(b): wrist trajectories for domains 1 and 2, (c) trajectory of domain 1 mapped
onto domain 2 with a spatial transformation, (d) transformation with minimisa-
tion of the local position ‘slack’, (e) zoomed-in similarity without temporal align-
ment (white lines represent wrist point correspondences across the two domains),
and (f) similarity with temporal alignment. As shown, the distance (proportional
to the sum of the lengths of the white lines) is lower under alignment.

8.3 Using Hand Shape as a Filter

As Figure 3.6 demonstrates, hand shape carries much of the discriminative in-

formation in gestures, particularly in complex gesture languages such as sign

language, and needs to be included in order to successfully learn gestures. We
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use a hand shape descriptor to discard false positives of reservoir samples where

the wrist trajectories of the one-shot learning domain and the gesture reservoir

match, but the hand shape is di↵erent (the similarity score is below a threshold,

where the threshold is determined on a validation set).

Comparing hand shapes across domains is not straightforward since the do-

mains may be of di↵erent resolution, contain di↵erent persons, lighting etc. More-

over, our pose estimator only provides wrist positions (not hand centres). We

next describe a domain-independent, somewhat lighting-invariant hand shape

descriptor that addresses these challenges.

We follow the method of [Buehler et al., 2009] (described in Section 2.1.6) where

hands are first segmented, and then assigned to a cluster index. The clusters are

used both to provide a distance between hand shapes and also to aid in the

segmentation. To compare two hands in di↵erent domains, we assign them to

their nearest hand cluster exemplars and measure their similarity as the distance

between the HOGs of their cluster exemplars (shown in Figure 8.5).

In detail, GraphCut [Boykov and Jolly, 2001, Rother et al., 2004] is used for an

initial segmentation (with skin colour posteriors obtained from a face detector),

and the segmented hands are represented using HOG features (of dimensional-

ity 15 ⇥ 15 ⇥ 31). The segmentation is performed within a box defined by an

estimate of hand centre position (based on the elbow-wrist vector). Hand exem-

plars are then formed by clustering HOG vectors for examples that are far away

from the face using k-means (K = 1000). These are e↵ectively ‘clean’ hand clus-

ters, without face regions in the foreground segmentation. For an input image,
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L2 distance

domain 1

domain 2

(a) (b) (c) (d)

Figure 8.5: Hand shape descriptor. (a) Badly segmented hands (due to over-
lap with skin) in two domains, (b) hands assigned to their hand cluster exemplars,
(c) HOG of size-normalised exemplars, and (d) hands are compared across do-
mains in terms of l2 distance between the HOGs of the hand exemplars.

HOG vectors are matched to their nearest hand cluster, resulting in a ‘cleaned’

segmentation of the hand.

8.4 Implementation Details

In this section we provide the remaining implementation details.

Learning framework. For each word, the positive training samples are ob-

tained from the top ranked positive samples of each reservoir video. If there are

wc occurrences of the word in the subtitles of a reservoir video, then the top

5wc positive samples are used – note, no non-maximum suppression is used when

sliding the classifier window so there are multiple responses for each occurrence.

The number of positives is capped at 1,000, and 1,000 randomly sampled reser-

voir gestures are used as negatives. We use the dual formulation of SVMs since

our space and time alignment method provides the alignments as kernels, not in

feature space (so primal optimisation is not suitable).
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Hand shape. We precompute a K ⇥ K hand distance matrix o✏ine for any

one-shot learning domain and gesture reservoir video pair. At runtime, the com-

parison of two gestures is reduced to looking up the distance in the matrix for

each pair of time-aligned frames, and summing up the distances.

8.5 Experiments

Four datasets are employed in this work: the extended sign language extraction

dataset containing TV broadcasts (Section 3.2.2); two sign language dictionaries

(Section 3.2.3); and a dataset of Italian hand gestures (Section 3.2.4).

8.5.1 Detecting gestures in TV broadcasts by training a

one-shot learner on a dictionary

Here we evaluate the first main component of our method, i.e. how well can we

spot gestures in the weakly supervised videos given a one-shot learning example

from a dictionary? We compare this component to Chapter 7, where we used

Multiple Instance Learning to extracting gestures purely from weakly supervised

TV broadcasts. We show that we outperform Chapter 7 with this conceptually

simpler approach.

Manual ground truth. The test dataset for this experiment (a six hour subset

of BSL-TV) is annotated for six gestures (bear, gram, heart, reindeer, snow and

winter), with on average 18 occurrences for each gesture, and frame-level manual
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ground truth as described in Section 3.2.1 (where we spent a week to label 41

words frame-by-frame). A benefit of the domain adaptation method is that it

renders this expensive manual labelling less important, since the training and test

sets no longer need to be of the same domain, which enables the use of supervised

datasets from other domains (e.g . other dictionaries) for testing (as we show in

the next experiment).

Task. The task for each of the six gestures is, given one of the 15s temporal

windows of continuous gestures, to find which windows contain the target gesture,

and provide a ranked list of best estimates. Only about 0.5s out of 15s actually

contain an instance of the gesture; the remainder contain other gestures. A

gesture is deemed ‘correct’ if the intersection over union score is over 0.5.

Results. Precision-recall curves for the gestures are given in Figure 8.6. As

shown, thanks to our domain-adapted one-shot learning method, we vastly out-

perform the purely weakly supervised method of Chapter 7. This shows clearly

the value of using strong supervision.

8.5.2 Learning gestures from strong and weak supervision

In this key experiment we evaluate our method trained on the 155 hour BSL-TV

weakly supervised dataset.

The method is evaluated on a second strongly supervised dictionary dataset

(‘BSL dictionary 2’) on the same gestures as in the first strongly supervised
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Figure 8.6: Gesture spotting accuracy on the gesture reservoir for BSL-
TV, with a comparison to Chapter 7. PR curves are for six gestures with ground
truth.

dictionary (‘BSL dictionary 1’), but in a di↵erent domain, signed at di↵erent

speeds by di↵erent people. The second dictionary is used as the testing set to

reduce annotation e↵ort (the BSL-TV reservoir does not come with frame-level

labels). Section 3.2.3 explains how these cross-dictionary gesture ‘pairs’ that

contain the same sign signed the same way are found.

Baseline one-shot learner. We compare our method to a classifier trained

only on a sign language dictionary (‘BSL dictionary 1’), without any weakly su-

pervised additional training data from the gesture reservoir (this baseline method

is illustrated at the top of Figure 8.1). The method is otherwise the same – it

uses the time and space domain adaptations etc.
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Training and testing set. The cross-dictionary gesture ‘pairs’ that contain

the same sign signed the same way (found as explained in Section 3.2.3) define

an ‘in-common’ set of 500 signs. The training set consists of the 150 gestures

from BSL dictionary 1 from the in-common set for which a su�cient number

of examples exist in the BSL-TV gesture reservoir (set to at least 16 subtitle

occurrences). The testing set consists of the same set of 150 gestures from BSL

dictionary 2.

Test task & evaluation measure. Each of the 150 training gestures is eval-

uated independently. For each gesture, the gesture classifier is applied to all 150

test gestures, one of which contains the correct gesture. The output of this step

is, for each gesture classifier, a ranked list of 150 gestures (with scores). The task

is to get the correct gesture first. Each gesture classifier is assigned the rank of

the position in the 150-length list in which the correct gesture appears.

Results. Figure 8.7 shows recall at rank k for the baseline and our proposed

method using the gesture reservoir. We clearly see that, although the baseline

ranks 66% of the gestures within the first top 60, learning from the reservoir beats

it, with all gestures ranked within the first 25, 13% as rank 1, 41% within the

first 5, and 70% within the first 10. We believe this is due to the high training

data variability that the additional supervision from the gesture reservoir provides

(from multiple persons, with gestures performed with many di↵erent speeds etc.).
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Figure 8.7: Gesture classifier accuracy evaluated on gesture dictionary
‘BSL dictionary 2’. The graph shows the recall at rank k for the baseline and
our proposed method. For example, 87% of gestures are ranked within the top
15.

Failure modes. There are two principal failure modes: first, the majority of

gestures with ranks above 15 are due to several gestures out of the test gestures

having very similar hand trajectories and hand shapes. With an already chal-

lenging discrimination problem, this causes confusions when the gesture in the

evaluation set is performed very di↵erently from any gesture in the training reser-

voir. The other major problem source is inaccurate pose estimates, which results

in inaccurate hand trajectory and hand shape estimates.

Component evaluation. Each of the components of our method is evaluated

by switching one o↵ at a time, and reporting rank-15 accuracy. Changing the time

alignment method from global alignment to DTW decreases the rank-15 accuracy
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from 87% to 51%; switching o↵ hand shape lowers it to 72%; switching o↵ time

alignment for the one-shot dictionary learner drops it to 46%; and switching o↵

geometric alignment drops it to 8%. The causes for these drops in accuracy are

intuitive: when turning o↵ hand shape, signs such as ‘gram’ or ‘reindeer’ (where

hand shape is informative) are less well detected; likewise, when turning o↵ time

alignment, signs such as ‘snow’ (with large speed variation across people) are less

well detected.

Summary. Our method works despite the domain adaptations between the

dictionaries and weakly supervised dataset being very challenging: di↵erent res-

olutions, settings, people, gesture speed and regional variations; and one domain

(the dictionaries) containing non-co-articulated gestures (i.e. having breaks be-

tween gestures) whereas other (the weakly supervised dataset) only contains con-

tinuous gestures. To add to all of this, the supervision in the weakly supervised

dataset is very weak and noisy. Despite all these challenges, we show a con-

siderable performance boost. We consistently outperform the one-shot learning

method, and achieve much higher precision and recall than previous methods in

selecting similar gestures from the gesture reservoir using weak supervision.

8.5.3 Comparison on ChaLearn multi-modal dataset

On the ChaLearn dataset we define the one-shot learning domain as the train-

ing data for one person, and keep the remaining training data (of the 26 other

persons) as the unlabelled ‘gesture reservoir’. Only Kinect skeletons are kept for
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the reservoir. We compare this setup to using all the ground truth for training.

Task. The task here is, given a test video (also containing distractors), to spot

gestures and label them as one of 20 gesture categories.

Audio for gesture segmentation. Gestures only appear in a small subset of

the dataset frames, so it makes sense to spot candidate windows first. To this

end we use the same method as the top entries in the ChaLearn competition:

segment gestures (into temporal windows) using voice activity detection (this is

possible since the persons pronounce the word they gesture). However, we do

not use audio for classification, since our purpose here is to evaluate our vision-

based classifier. We therefore compare only to methods that do not use audio

for classification, but only use it for segmentation into temporal windows (this

includes the winner’s method without audio classification).

Baseline, our method & upper bound. The baseline is learning from a sin-

gle supervised training example (where training data comes from a single person

from the 27 person training dataset; we report an average and standard devia-

tion over each possible choice). This is compared to our method that uses the

one-shot learner to extract additional training data from the unlabelled ‘gesture

reservoir’. The upper bound method uses all training data with manual ground

truth.
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Overview of experiments. In Experiment 1, we compare in detail to the

competition winner [Wu et al., 2013] with the same segmentation method (audio,

with our re-implementation of that method), using only skeleton features for

classification, and evaluating in terms of precision and recall on the validation

set. In Experiment 2, we compare to competition entrants using the standard

competition evaluation measure on test data, the Levenshtein distance L(R, T ),

where R and T are ordered lists (predicted and ground truth) corresponding to

the indices of the recognised gestures (1–20); distances here are summed over all

test videos and divided by the total number of gestures in ground truth.

Results for Experiment 1. Our method achieves very respectable perfor-

mance using a fraction of the manually labelled data that the other competition

entrants use. The competition winner’s method gets Precision P = 0.5991 and

Recall R = 0.5929 (higher is better) using skeleton features for classification [Wu

et al., 2013]. Using this exact same setup and test data, the baseline achieves

P = 0.4012 (std 0.015) and R = 0.4162 (std 0.011) – notably by only using

a single training example (the winner used the whole training set containing

more than 400 training examples per class). Our results are improved further to

P = 0.5835 (std 0.021), R = 0.5754 (std 0.015) by using gestures extracted from

the gesture reservoir, still only using one manually labelled training example per

gesture. Using the whole training set yields P = 0.6124, R = 0.6237.

Results for Experiment 2. In terms of Levenshtein distance, our method

improves from the baseline 0.5138 (std 0.012) to 0.3762 (std 0.015) (lower is
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better). With only a single manually labelled training example (two orders of

magnitude less manually labelled training data than other competition entries)

we achieve similar performance to the best method using skeleton for classification

(‘SUMO’, score 0.3165 [Escalera et al., 2013]); and using the full training set we

outperform them at 0.3015.

8.5.4 Computation time.

The computation times for hand segmentation is 0.1s/frame. Time alignment is

approx 0.001s per gesture pair, or 1,000s for a 1000⇥ 1000 kernel matrix. Other

costs (e.g . space alignments, SVM training and testing, subtitle preprocessing

etc.) are negligible in comparison (a few seconds per gesture/video).

8.6 Conclusion

We have presented a method that goes beyond learning from weak supervision

only (as in Chapter 7), instead learning from both strongly and weakly supervised

training data. We show this results in a much stronger classifier than if one learns

from strong or weak supervision alone. We further show that this method extends

beyond sign language, providing results on both the sign language dataset and a

dataset of Italian gestures. The performance exceeds that of Chapter 7 and the

previous state-of-the-art result on the Italian gesture dataset.



Chapter 9

Contributions and Future Work

This chapter summarises the main contributions of this thesis, and discusses

future work.

This thesis has presented novel methods in two areas of computer vision: human

pose estimation and gesture recognition.

For human pose estimation, we made the following contributions:

1. We proposed a co-segmentation algorithm for segmenting humans out of

videos (which we use in our pose estimator), and an evaluator that predicts

whether the estimated poses are likely to be correct or not.

2. We further extended this random forest-based pose estimator to new do-

mains (with a transfer learning approach), and enhanced its predictions

with new methods that predict poses sequentially (rather than indepen-

dently), and use temporal information in the videos (rather than predicting

the poses from a single frame).

201
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3. We showed that convolutional neural networks can be used to estimate

human pose even more accurately and e�ciently than with a random forest.

4. We proposed two new convolutional network architectures, and showed how

optical flow can be employed within these architectures to further improve

the predictions.

For gesture recognition, we made the following contributions:

1. We explored the idea of using readily available weak supervision to learn

gestures (instead of strong supervision, which is expensive to collect), and

showed that we can use this weak supervision to essentially learn sign lan-

guage automatically by ‘watching TV’.

2. We showed that correlations between sign language signers’ mouth and

hand movement can be used to significantly cut down the search space

when learning sign language gestures.

3. We further showed that if even a small amount of strong supervision is

available (as there is for sign language, in the form of sign language video

dictionaries), this strong supervision can be combined with weak supervi-

sion to learn even better models.

9.1 Future Work

This section discusses some potential future directions for the two areas explored

in this thesis.
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9.1.1 Pose estimation

• Automatically extracting parameters for domain adaptation. In

Chapter 5 we proposed to use domain adaptation to generalise a pose esti-

mator trained on long-sleeved persons to function on short-sleeved persons.

In that method, the side information (the sleeve length) was manually spec-

ified for each input video. In future work this information could be auto-

matically recovered (e.g . by training a sleeve length regressor from a large

set of videos with containing people with di↵erent sleeve lengths).

• Architectural improvements to ConvNets.

– Spatial model on top of ConvNet. The current ConvNet pose

estimator estimates joint positions without an explicit spatial model.

This spatial model could be learnt with another ConvNet (taking the

heatmaps as an input), e.g . a conditional random field could be used

as in [Jain et al., 2014a, Tompson et al., 2014].

– Sequential pose prediction for ConvNet. The ConvNet pose

estimator predicts joints independently. However, as we discussed in

Chapter 5, the human kinematic chain places strong priors for possible

locations of a joint (given the positions of the other joints).

– Multi-resolution input into ConvNet. The ConvNet pose esti-

mator predicts joints from a single fixed-height input image. How-

ever, using multiple input sizes fed into parallel networks with shared

weights has been shown empirically to improve performance signifi-
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cantly [Tompson et al., 2014].

– Predicting joint coordinates and heatmaps jointly. We explored

two di↵erent kinds of networks, one that predicts joint positions di-

rectly, and one that predicts heatmaps for joints. One (heatmap)

was shown to perform well on wrists (which have high variability in

position), and the other (coordinates) better on shoulders and wrists

(whose positions vary much less, and thus are easier to learn). This en-

courages a study into using both loss targets jointly – e.g . by comput-

ing losses separately for the two targets and having a weighed average

loss on top that is then backpropagated.

– Learning higher-level temporal features. Our current work on

temporal pose estimation focuses on the use of optical flow. It would

be interesting to also explore higher level temporal features, which

could potentially be learnt with spatiotemporal convolution.

– Recurrent Neural Nets (RNNs) for time and space. Another

approach to encoding temporal information would be using RNNs,

which naturally work well for tasks where the output is a sequence with

dependencies between the sequences. They have been very successful

in a variety of tasks – most recently in video (Google) [Ng et al.,

2015]. One could also explore its use for learning a spatial model for

pose estimation, as done recently for scene labelling in [Pinheiro and

Collobert, 2013].
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• Evaluator network for pose estimation. In Chapter 4 we briefly

touched upon the idea of training an evaluator, which for each pose esti-

mate predicts a score measuring the likelihood that the estimate is correct.

This is useful as the score could be used to: (i) discard/down-weigh the pre-

diction when estimating pose in video (instead interpolating the position

from previous frames using e.g . optical flow) – the down-weighing would be

straightforward to implement using our optical flow network; or (ii) ‘clean

up’ automatically labelled additional training data (we are currently ex-

ploring this in the context of personalised pose estimation).

• Occlusion prediction. Our current work does not really deal with oc-

clusions – the joints are assumed to always be visible. To rectify this, one

could imagine predicting an occlusion flag (a probability for occlusion) for

each joint, and taking this into account in the loss function.

• Training data. One of the main limitations for current pose estimation

research is the lack of large training datasets, such as ImageNet for object

detection. One approach would be to detect millions of humans with a

person detector e.g . in YouTube videos and use crowdsourcing (e.g . Amazon

mechanical turk) to label them (with a large budget). Another interesting

approach would be to collect a large amount of training data with motion

capture in general (e.g . parks, schools etc.) scenes (with multiple cameras)

– this kind of automatic labelling has recently been explored with ConvNets

by the NYU team [Elhayek et al., 2015].
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9.1.2 Gesture recognition

• Depth data and Kinect. The work on learning sign language from TV

in this thesis has been limited to somewhat low-res RGB TV broadcasts,

which do not contain depth information, and thus are more di�cult to track

humans in. We have an ongoing project with BBC and Red Bee Media

where we will be recording Kinect data in the sign language interpretation

studios. The hope is that this data will be easier to learn from, and the

learnt models (from Kinect output – depth, skeleton and RGB) will more

readily transfer to real-life application scenarios, e.g . with a signer signing

into a Kinect and the signing being translated into text/speech.

This project will also provide a large amount of training data for pose

estimation (with the training labels – somewhat noisy – from the Kinect

tracker). This training data could be filtered with an evaluator (see above

discussion on pose estimation), and the ‘trusted’ training samples could be

used to train a pose estimator with a ConvNet – either a general RGB pose

estimator, or a depth map-based pose estimator (as Kinect).

• Linguistic models and sentence constraints. The work in this the-

sis learns individual signs in a sentence separately. However, in practice

many dependencies and constraints exist within sentences: co-occurrences,

grammar, and word order. These could be exploited with weak sentence

constraints [Bojanowski et al., 2014] or with a linguistic model (explicit, or

implicitly learnt).
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• Replacing hand-engineered descriptors with learnt descriptors.

The hand and mouth descriptors etc. in this thesis could be learnt with

a ConvNet – or the output from the last layers of a ImageNet-trained net-

work could be used. These would replace the SIFT & HOG descriptors in

this work.

• Hand & finger tracking. Understanding hands and hand shape is key to

gesture recognition. Our work used a simple hand shape descriptor based

on predicted wrist position. A much more useful descriptor would be the 3D

orientation and position of both the hand and the fingers. This is di�cult

to obtain from low-res RGB TV broadcasts such as those used in this work

– however, given the new Kinect data described above, more detailed hand

tracking is now feasible. This is a well studied problem [Krejov and Bowden,

2013, Oikonomidis et al., 2011, Sharp et al., 2015], and o↵-the-shelf solutions

to it exist [Oikonomidis et al., 2011].
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O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In Proc.
NIPS, 1998.

S. Mitra and T. Acharya. Gesture recognition: A survey. Systems, Man, and Cyber-
netics, 37(3):311–324, 2007.



215

T. Moeslund. Visual analysis of humans: looking at people. Springer, 2011.

G. Mori and J. Malik. Estimating human body configurations using shape context
matching. In Proc. ECCV, 2002.

S. Nayak, K. Duncan, S. Sarkar, and B. Loeding. Finding recurrent patterns from
continuous sign language sentences for automated extraction of signs. J. Machine
Learning Research, 13(1):2589–2615, 2012.

J. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici.
Beyond short snippets: Deep networks for video classification. arXiv preprint
arXiv:1503.08909, 2015.

T. D. Nguyen and S. Ranganath. Tracking facial features under occlusions and recog-
nizing facial expressions in sign language. In Proc. FG, 2008.

T. D. Nguyen and S. Ranganath. Recognizing Continuous Grammatical Marker Facial
Gestures in Sign Language Video. In Proc. ACCV, 2010.

I. Oikonomidis, N. Kyriazis, and A. Argyros. E�cient model-based 3d tracking of hand
articulations using kinect. In Proc. BMVC, 2011.
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