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Abstract

In this paper we propose the first method known to
the authors that successfully differentiates spontaneous
from posed facial expressions using a realistic training
corpus. We propose a new spatiotemporal local texture
descriptor (CLBP-TOP) that outperforms other descrip-
tors. We demonstrate that our temporal interpolation and
visual/near-infrared fusion methods improve the differentia-
tion performance. Finally, we propose a new generic facial
expression recognition framework that subdivides the facial
expression recognition problem into a cascade of smaller
tasks that are simpler to tackle. The system is the first to dif-
ferentiate spontaneous from posed facial expressions with a
realistic corpus and achieves promising results.

1. Introduction

Facial expressions can be broadly classified as either
spontaneous (genuine) or posed (faked). For example,
posed smiles often only involve movement of the mouth
(zygomaticus) whereas spontaneous smiles are more sym-
metrical and also include the muscles surrounding the eyes
(orbicularis oculi) [4]. We propose the first method known
to the authors to successfully differentiate spontaneous vs.
posed (SVP) facial expressions with a realistic corpus.

There are numerous potential applications for SVP dif-
ferentiation. Police can use SVP in surveillance systems to
detect deceptive facial expressions. Doctors can recognise
when patients are experiencing genuine pain so that their
pain is taken seriously. Researchers can subdivide the fa-
cial expression recognition problem into two tasks and sep-
arately optimise their solutions.

Work on facial expressions in computer vision originally
focused on posed expressions, with the focus now shifting
towards recognising spontaneous expressions in more real-
istic situations. Very recently pioneering work was done in
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Figure 1. (a) shows an example of a visual and near-infrared fa-
cial expression (left) being interpolated through graph embedding
(middle); the result from which a spatiotemporal local texture
descriptor is extracted (right), enabling differentiation of sponta-
neous from posed expressions using multiple kernel learning, sup-
port vector machines and random forests. (b) shows a generic fa-
cial expression recognition framework where a facial expression
is detected (top); then classified as a micro or macro-expression
(middle); after which spontaneous and posed macro-expressions
are differentiated (bottom).

facial micro-expression recognition [10] aiming to recog-
nise very short, involuntary spontaneous facial expressions
that reveal suppressed affect. As an extension to our work
on SVP differentiation we propose a generic facial expres-
sion recognition framework that subdivides the facial ex-
pression recognition problem into a cascade of application-
independent spontaneous vs. posed and micro vs. macro-
expression classifiers and application-specific micro, posed
and spontaneous expression classifiers.

The main contributions of this paper are: 1. to the best
knowledge of the authors the method is the first to differen-
tiate spontaneous from posed facial expressions with a real-
istic corpus; 2. it proposes a new spatiotemporal local tex-
ture descriptor CLBP-TOP which we demonstrate outper-
forms other descriptors; and 3. it proposes a generic classifi-
cation cascade that divides the facial expression recognition



problem into small simple subtasks. We show that SVP dif-
ferentiation benefits from both temporal interpolation and
near-infrared images. Our system is the first to differentiate
spontaneous from posed facial expressions with a realistic
corpus and achieves very promising results.

2. Related Work
Very few studies in computer vision have investigated the

general problem of differentiating between spontaneous and
posed facial expressions. Valstar et al. [13] studied SVP dif-
ferentiation based on eyebrow movements. The authors ex-
tended their work in Valstar et al. [12] to distinguish spon-
taneous from posed smiles using head, face and shoulder
modalities. However, in both studies data for spontaneous
and posed expressions were selected from different corpora.
Of these, the spontaneous corpus has so far not been made
publicly available. It would be valuable to evaluate the sys-
tem on a corpus in which data for spontaneous and posed
expressions were selected from same corpora so that the
classification would be focused more on SVP differences
than corpus differences.

Other studies have investigated SVP differentiation for
specific emotions but have not developed a generic SVP
classifier. Bartlett et al. [1] used Gabor wavelet decomposi-
tion to differentiate spontaneous from posed pain with 72%
accuracy. Cohn and Schmidt [3] used geometric features to
SVP differentiate smiles and found temporal patterns partic-
ularly useful, highlighting that the task could benefit from
spatiotemporal local texture descriptors.

Wang et al. [15] collected a corpus of natural and in-
frared spontaneous and posed facial expressions. However,
they only recorded the apexes for posed facial expressions,
making it impossible to exploit temporal differences be-
tween spontaneous and posed expression to differentiate be-
tween spontaneous and posed facial expressions. Zhao et
al. [16] found that near-infrared facilitates facial expression
recognition, providing a degree of illumination invariance.
We show that near-infrared is also very useful for differen-
tiating between spontaneous and posed facial expressions.

Many successful facial expression recognition ap-
proaches to date have involved using spatiotemporal local
texture descriptors. One such texture descriptor is LBP-
TOP which has recently achieved state-of-the-art results in
facial expression analysis [9, 17]. Recent work has also in-
vestigated temporal models. Shan et al. [11] proposed a
Bayesian temporal manifold model for deriving a probabil-
ity distribution measure of posed facial expressions.

3. Proposed Method
Our proposed SVP differentiation method combines

temporal interpolation with a new spatiotemporal feature
descriptor and state-of-the-art machine learning methods.

Unlike previous work, the system presented in this paper
1. eliminates classification of corpus differences by using a
new specially collected corpus with both spontaneous and
posed expressions; 2. classifies general SVP for any facial
expression instead of classifying specific expressions; 3. is
the first to also consider near-infrared for SVP differentia-
tion; 4. makes the SVP corpus publicly available; and 5.
uses cues from the whole face with a new powerful spa-
tiotemporal local texture descriptor.

We first discuss our methods in detail. As our work is
the first to create a realistic corpus for SVP differentiation,
we briefly discuss the experimental setting we used to col-
lect the corpus. We finally describe pilot work on a generic
facial expression recognition cascade that combines spon-
taneous and posed facial expression differentiation with re-
cent work on facial micro-expressions to analyse arbitrary
facial expressions.

3.1. Differentiating Spontaneous from Posed Facial
Expressions

We illustrate how we apply a temporal interpolation
model (TIM) together with a new feature descriptor and
state-of-the-art machine learning methods to successfully
differentiate spontaneous from posed facial expressions
with high accuracy. Algorithm 1 shows our framework for
SVP differentiation.

Spontaneous facial expressions last a varying length of
time depending on subjects and the emotion-eliciting con-
text. However, the length of posed facial expressions is nor-
mally set by the posing instructions. To improve general-
isation we temporally normalise all facial expressions to a
given set of frames θ ∈ T . For each facial expression im-
age sequence s we compute a temporally interpolated im-
age sequence ξs,θ = UMFn(t) + ξ̄s,θ for all θ ∈ T ,
where U is the singular value decomposition matrix, M
is a square matrix, Fn(t) is a curve and ξ̄i is a mean vec-
tor. We provide details of the temporal graph embedding
method in Section 3.4. Temporal normalisation is done af-
ter the face has been cropped using the eye positions from a
Haar eye detector.

We then apply spatiotemporal local texture descriptors
(SLTD) to the video for feature extraction. In particular,
LBP-TOP has recently achieved state-of-the-art results in
facial expression analysis [9]. We show that by using mag-
nitude differences to neighbours and the centre grey level
in addition to signs we can reach significantly better results.
The details of this new SLTD are discussed in Section 3.3.

We use Multiple Kernel Learning (MKL) [14] to im-
prove our classification results. Given a training set H =
{(x1, l1)...(xn, ln)} and set of kernels {K1...KM} where
Kk ∈ Rn×n and Kk is positive semi-definite, MKL learns
weights for linear/non-linear combinations of kernels over
different domains by optimising a cost function Z(K,H)



Algorithm 1 Algorithm for SVP differentiation. N is the
base corpus of near-infrared (NIR) and visual (VIS) cor-
pora. C is any subcorpus of image sequences ci. Γ is
the set of SLTD parameters where x × y × t are the num-
ber of rows, columns and temporal blocks into which the
SLTD feature extraction is divided. T is the set of frame
counts into which image sequence ci is temporally inter-
polated. The temporal interpolation variables are defined
in Section 3.4. POLY(qk,r, qo,r, d) and HISINT(qk,r, qo,r)
compute the polynomial kernel of degree d and the his-
togram intersection kernel. SVP(K) returns the result from
a multiple kernel learning classifier trained to distinguish
spontaneous from posed facial expressions.
LAYER3-SVP(N )

1. Initialise Γ = {8 × 8 × 1, 8 × 8 × 2, 8 × 8 × 3} and
T = {10, 20, 25, 30}

2. For all i.Ci ∈ N

(a) For all j.cj ∈ Ci ∧ s = (i, j) with frames
ρs,1...ρs,t

i. Detect face Fs in the first frame ρs,1
ii. Find eyes E(Fs)

iii. Crop face using E(Fs) with the formula
from [10]

iv. For all θ ∈ T compute TIM image sequence
ξs,θ = UMFn(t) + ξ̄s,θ

v. For all p ∈ Γ, θ ∈ T extract µs,p,θ(ξs,θ) =
{qs,p,θ,1...qs,p,θ,m...qs,p,θ,M} set of SLTDs
where M is the length of the SLTD feature
vector

3. ComputeK = {∀k,m, o, C, θ, p.C ∈ N ∧ ck ∈ C∧
m = 1...M ∧ co ∈ C ∧θ ∈ T ∧p ∈ Γ∧ r = (m, θ, p)|
HISINT(qk,r, qo,r), POLY(qk,r, qo,r, 2),
POLY(qk,r, qo,r, 6)}

4. Output SVP(K)

where K is a combination of basic kernels. As illustrated
in Algorithm 1, we combine a histogram-intersection ker-
nel HISINT and polynomial kernels POLY of degrees 2 and
6 with different SLTD parameters p ∈ Γ over different tem-
poral interpolations θ ∈ T where

HISINT(qk,r, qo,r) =

b∑
a=1

min {qak,r, qao,r} (1)

POLY(qk,r, qo,r, d) = (1 + qk,rq
T
o,r)

d (2)

and b is the number of bins in qk,r, qo,r and r = (m, θ, p).
As alternative classifiers we use Random Forest, SVM,

LINEAR and their fusion through majority voting. We ran
pilot experiments to determine the optimal values of Γ and
T for our corpora that are given in Algorithm 1. Finally,
SVP(K) either runs MKL on the computed kernels or an-
other classifier w ∈ φ on SLTD features µ to differentiate
spontaneous from posed facial expressions.

3.2. New SVP Differentiation Corpus (SPOS)

Previous approaches to SVP differentiation suffer from
using different corpora and different subjects for each train-
ing class, thereby to some extent learning to differentiate
the corpora in addition to differentiating SVP.

Our new spontaneous vs. posed (SPOS) corpus provides
spontaneous and posed expressions for the same subjects in
the same session. This allows us to train for SVP differen-
tiation rather than corpus differentiation. The initial corpus
consists of 7 subjects (4 male and 3 female; 4 Asian and 3
Caucasian) with 84 posed and 147 spontaneous expressions.
Five subjects wore glasses.

The corpus was recorded in an indoor bunker environ-
ment. Two cameras running at 640x480 with 25fps were
used, one recording data from the visual and the other from
the near-infrared spectrum. The two streams were automat-
ically synchronised with manual checking to ensure con-
sistency. Each subject was recorded watching 14 carefully
selected film clips chosen to induce 6 basic emotions. The
emotions with the number of spontaneous expressions in
parenthesis are: anger (13), disgust (20), fear (32), happi-
ness (66), sadness (5) and surprise (11). After the exper-
iment subjects were asked to pose each expression twice,
yielding 12 posed expressions per subject.

In total 720 minutes of data with 1 080 252 frames were
obtained. The data were segmented and labelled for onset,
apex, offset and end by two annotators according to sub-
jects’ self-reported emotions. For our experiments we fo-
cus on the onset phase since the length from onset to end of
spontaneous expressions can vary significantly and be very
long. In total 22462 frames from onset to apex were used for
classification. The average expression lengths were about
6 seconds (147 frames) and 13 seconds (323 frames) for
posed and spontaneous expressions respectively. The aver-
age lengths from onset to apex were about 1 seconds (28
frames) and 3 seconds (69 frames). We are in the process of
adding more subjects to the corpus.

3.3. CLBP-TOP

Completed local binary patterns (CLBP) proposed by
Guo et al. [6] represent the original image as its centre grey
level (C) and the sign (S) and magnitude (M) of the lo-
cal difference dp = gp − gc where gc is the central pixel
with P circularly and evenly spaced neighbours gp, p =
0, 1, . . . , P − 1. The local difference dp is decomposed into
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Figure 2. (a) A sample 3× 3 block; (b) the local difference dp; (c)
the sign component S and (d) magnitude component M.

the sign and magnitude components:

dp = sp ∗mp,
sp = sgn(dp)
mp = |dp|

(3)

The three operators proposed to code the features S, M and
C are

CLBPSP,R =

P−1∑
p=0

s(gp − gc)2p, s(x) =

{
1, x ≥ 0
0, x < 0

(4)

CLBPMP,R =

P−1∑
p=0

t(mp, c)2
p, t(x, c) =

{
1, x ≥ c
0, x < c

(5)
CLBPCP,R = t(gc, cl) (6)

where R is the radius of the neighbourhood, c is a threshold
set to the mean value of mp for the whole image and cl is
a threshold set to the mean grey level of the whole image.
CLBPS is equivalent to the original LBP. Figure 2 shows an
example computation of the sign (S) and magnitude (M) of
the local difference.

We extend the purely spatial CLBP to a dynamic tex-
ture descriptor which we call CLBP from Three Orthogonal
Planes (CLBP-TOP). To the best knowledge of the authors,
this is the first time that CLBP has been used for facial ex-
pression recognition and the first time CLBP has been ex-
tended into an SLTD.

We concatenate the CLBP histograms to

CLBPH = [CLBPS,CLBPM,CLBPC]. (7)

CLBPH is computed on three orthogonal planes XY,
XT and YT and the results are concatenated as shown
in Figure 3. This results in 3 · 2 · (2P + 1) bins,
where P is the number of local neighbouring points

Figure 3. Concatenated histogram from the three planes XY, XT
and YT [17].

Figure 4. The concatenation of features from different blocks [17].

around the central pixel in a frame. We denote the re-
sulting SLTD as CLBPTOPPXY ,PXT ,PY T ,RXY ,RXT ,RY T

where PXY , PXT , PY T , RXY , RXT , RY T are the number
of neighbouring points in XY, XT and YT planes and the
radii in X, Y and T planes, respectively. To encode spa-
tial information in the descriptors we divide the video into
several video volumes, compute CLBP-TOP for these sep-
arately and concatenate the results as shown in Figure 4.

Given an X × Y × T dynamic texture (DT) with xc ∈
{0, . . . , X − 1}, yc ∈ {0, . . . , Y − 1}, tc ∈ {0, . . . , T − 1}
we can define a histogram of the DT by

Hi,j =
∑
x,y,t

I(fj(x, y, t) = i), i = 0, . . . , Z, j = 0, 1, 2

(8)
where fj(x, y, t) presents the CLBP code of the central
pixel (x, y, t) in the jth plane computed by CLBPH in
Equation 7, and Z = 1 for CLBPC and Z = 2P − 1 for
CLBPS and CLBPM . Only the central part is consid-
ered because a sufficiently large neighbourhood cannot be
used at the borders of the volume.

The histogram is normalised to a consistent description
for different spatial and temporal sizes:

Ni,j =
Hi,j∑Z
k=0Hk,j

(9)

This yields CLBP-XY, CLBP-XT and CLBP-YT his-
tograms that are concatenated to build the final CLBP-TOP
feature vector shown in Figure 3.

3.4. Temporal Interpolation Model

In this subsection we briefly discuss how we use graph
embedding to temporally interpolate facial expression im-



Figure 5. The graph representation of a near-infrared facial expres-
sion image sequence.

age sequences. Interpolation enables us to achieve more sta-
tistically stable feature extraction results by increasing the
number of frames we use for extraction. Zhou et al. [18]
previously proposed a similar method for synthesising a
talking mouth, and Pfister et al. [10] applied it to recog-
nising spontaneous facial micro-expressions. In this paper
we show that this method can also yield improved results
for differentiating spontaneous from posed facial macro-
expressions.

Our temporal interpolation model (TIM) views a video
of a facial expression as a set of images sampled along
a curve and creates a continuous function in a low-
dimensional manifold by representing the facial expression
video as a path graph Pn with n vertices. Vertices cor-
respond to video frames and edges to adjacency matrix
W∈{0, 1}n×n. A sample graph is shown in Figure 5. To
embed the manifold in the graph we map Pn to a line that
minimises the distance between connected vertices. We
minimise ∑

i,j

(yi − yj)2Wij , i, j = 1, 2, . . . , n (10)

to obtain mapping y = (y1, y2, . . . , yn)T, which is equiva-
lent to calculating the eigenvectors of the Laplacian graph
of Pn. We compute the Laplacian graph such that it has
eigenvectors {y1,y2, . . . ,yn−1} and enables us to view yk
as a set of points described by functions

fnk (t) = sin (πkt+ π(n− k)/(2n)) , t ∈ [1/n, 1] (11)

sampled at t = 1/n, 2/n, . . . , n/n. We use the result-
ing curve Fn(t) = [fn1 (t)...fnn−1(t)] to temporally inter-
polate images at arbitrary positions within a facial expres-
sion. To find the correspondences for curve Fn within the
image space, we map the image frames to points defined by
Fn(1/n),Fn(2/n), . . . ,Fn(1) and use a linear extension
of graph embedding to learn a transformation vectorw that
minimises∑

i,j

(
wTxi −wTxj

)2
Wij , i, j = 1, 2, . . . , n (12)

where xi = ξi− ξ̄ is a mean-removed vector for vectorised
image ξi. Zhou et al. showed that we can interpolate a new
image ξ by

ξ = UMFn(t) + ξ̄ (13)

where M is a square matrix and X = UΣV T is the solu-
tion to the resulting eigenvalue problem. The validity of this
interpolation depends on assuming that all frames of the in-
put video ξi are linearly independent. The assumption held
for both the NIR and VIS subcorpora.

We compute a temporally interpolated image sequence
ξs,θ = UMFn(t) + ¯ξs,θ for all θ ∈ T,C ∈ N, ci ∈
C, compute all combinations of them with different SLTD
block parameters Γ and choose the number of frames θ ∈ T ,
parameters p ∈ Γ and classifiers that maximise the accuracy
for a given N .

3.5. Generic Algorithm for Facial Expression
Recognition

Algorithm 2 presents a generic facial expression recogni-
tion framework that combines solutions to subproblems and
a solution to facial micro-expression recognition with our
algorithm for SVP differentiation. Our SVP differentiation
algorithm provides one of two missing links in the frame-
work. A solution to the other link is also proposed. This
generic framework addresses the facial expression recogni-
tion task by combining solutions to spontaneous vs. posed,
micro vs. macro-expression recognition with classifiers for
micro, posed and spontaneous expressions. Each solution in
the cascade can be independently optimised or substituted.
In this way the complex facial expression recognition task
is subdivided into several simpler problems.

LAYER1-FED requires a classifier that distinguishes im-
age sequences with and without facial expressions. We
combine the publicly available SMIC corpus [10] and the
spontaneous part of the SPOS corpus proposed in this work
to perform the classification. The SMIC corpus consists of
6 subjects with 77 spontaneous micro-expressions recorded
with a 100fps camera running at 640x480. As negative
data we use randomly selected image sequences without fa-
cial expressions from both SMIC and SPOS. This LAYER1-
FED system can be used for automatic segmentation of fa-
cial expressions by classifying sliding windows of frames.

If LAYER1-FED detects a facial expression, LAYER2-
MICMAC uses a publicly available facial micro-expression
classifier [10] to detect micro-expressions from the image
sequence. The classifier uses temporal interpolation to
counter short video lengths, LBP-TOP to handle dynamic
features and {SVM,MKL,RF} to perform classification.
Faces are normalised using a Local Weighted Mean trans-
formation on 68 facial feature points from an Active Shape
Model. After extracting LBP-TOP features classifier MKL-
PHASE1 recognises the occurrence of a micro-expression
and MKL-PHASE2 classifies it into an arbitrary number of



Algorithm 2 Generic algorithm for facial expression recog-
nition. γ is an input image sequence. LAYER1-FED detects
facial expressions (FED) by classifying image sequences
with and without facial expressions in a sliding window.
LAYER2-MICMAC distinguishes micro from macro ex-
pressions. LAYER3-SVP distinguishes spontaneous from
posed expressions. MICRO classifies a micro-expression
into a set of classes. SPONT and POSED classify spon-
taneous and posed macro-expressions respectively into an
application-specific set of classes.
ANALYSE-FE(γ)

1. If LAYER1-FED(γ)= FE [10]

(a) If LAYER2-MICMAC(γ)= micro [10]

i. Output MICRO(γ) [10]

(b) Else

i. If LAYER3-SVP(γ)= spont [this paper]
A. Output SPONT(γ) [various work]

ii. Else
A. Output POSED(γ) [7]

classes. The system was evaluated on two new corpora and
achieved promising results.

If a micro-expression is detected, an application-
dependent classifier MICRO is used to output the final class.
In this work we use the MKL-PHASE2 classifier to clas-
sify the micro-expression as either negative or positive. If
no micro-expression is detected the facial expression is a
macro-expression.

Macro-expressions can be either spontaneous or posed.
LAYER3-SVP distinguishes spontaneous from posed facial
expressions and enables them to be separately classified. If
the expression is spontaneous, SPONT is used to classify
it. This classifier can be trained on an arbitrary dataset
for an arbitrary set of classes, for example on the visible
and infrared corpus collected by Wang et al. [15]. If the
expression is posed, the POSED classifier determines the
class. Posed facial expression recognition has been thor-
oughly studied, so we use a standard optimised approach
by Huang et al. [7] on the Cohn-Kanade (CK) corpus [8].
Alternatively the spontaneous and posed parts of the SPOS
corpus can be used.

4. Experiments and Results

We evaluate our proposed SVP differentiation system by
leave-one-subject-out evaluation on the new SPOS corpus.

As the SLTD our experiments use CLBP-TOP and LBP-
TOP. For MKL we use the block sizes given in Algo-
rithm 1. Non-MKL classification results are reported with

Channel Method Accuracy Accuracy
LBP (%) CLBP (%)

NIR SVM 49.3 66.6
NIR FUS+TIM10 55.7 73.0
NIR LIN+TIM25 58.0 78.2
NIR LIN+TIM30 62.8 76.9
VIS SVM 65.3 70.3
VIS FUS+TIM20 66.0 72.0
VIS SVM+TIM25 66.6 70.0
VIS SVM+TIM30 66.6 70.0
NIR+VIS MKL+TIM25 66.8 80.0

Table 1. Leave-one-subject-out results on the SPOS corpus with
CLBP-TOP and LBP-TOP. NIR denotes the near-infrared chan-
nel; VIS denotes the visual channel; SVM denotes support vector
machines; MKL denotes Multiple Kernel Learning; TIMn denotes
temporal interpolation to n frames; LIN denotes the LINEAR clas-
sifier; FUS denotes fusion of SVM, LINEAR and Random Forest
through majority voting.

SLTD8×8×3, where the image is split in 8× 8 blocks in the
spatial domain and 3 blocks in the temporal domain. Un-
less stated otherwise, CLBP-TOP results are reported using
all components (S, M and C). SVM results without MKL
use a polynomial kernel of degree 6. We report the re-
sults for combinations of parameters p ∈ Γ, θ ∈ T and
classifiers φ = {SVM,MKL,RF,LIN,FUS} that gave the
best leave-one-subject-out results. RF is the Random For-
est [2] decision tree ensemble classifier, LIN is the LibLIN-
EAR classifier [5] and FUS denotes fusion of SVM, LIN
and RF through majority voting.

4.1. Experiment 1: SVP Classification

Table 1 shows the SVP differentiation results for CLBP-
TOP and LBP-TOP for near-infrared, visual and combined
channels using a variety of methods described in Section 3.

Interestingly the results for CLBP computed on near-
infrared data are better than for visual data. This confirms
the finding by Zhao et al. [16] that facial expression recog-
nition most certainly can benefit from using NIR. Even with
strong, stable illumination near-infrared provides a very
valuable source of information for SVP classification. By
computing CLBP on near-infrared data we outperform any
classifier trained on visual data.

The high performance of CLBP on NIR image sequences
is likely due to the illumination-invariance of NIR. Partic-
ularly the C component of CLBP is very sensitive to illu-
mination changes, as is the M component to a lesser extent.
NIR eliminates illumination variances, leaving only mono-
tonic grey level changes.

Fusing the NIR and VIS modalities with MKL improves
the results by 1.8% beyond the best performance on the NIR
data. We compute separate POLY and HISINT kernels for



near-infrared and visual data and use multiple kernel learn-
ing to combine them.

We used classifier fusion for the tasks that MKL did not
perform well in. FUS denotes fusion of the SVM, LINEAR
and Random Forest classifiers using majority voting. This
yields the best performance for CLBP on the visual corpus.

As expected, SVM and fusion of other classifiers (FUS)
performed best for CLBP on visual data. NIR data was best
classified by LINEAR.

4.2. Experiment 2: LBP-TOP Versus CLBP-TOP

Table 1 shows a comparison of the performance of LBP-
TOP and our proposed SLTD. CLBP-TOP outperforms the
popular LBP-TOP feature descriptor in all our experiments.
In particular, for the best result with near-infrared the dif-
ference is over 20%. For other experiments the differences
are more modest but significant. The increase in perfor-
mance for SVP differentiation is particularly significant.
This shows that the magnitude (CLBPM ) and centre grey
level component (CLBPC) added in CLBP-TOP preserve
important information.

The difference in accuracy of LBP-TOP and CLBP-TOP
is considerable for NIR data (13.2–20.2%). For the VIS
channel it is much smaller (3.4–6.0%). This shows that the
magnitude and centre grey level added are particularly ex-
ploitable for near-infrared data.

The improvement from using TIM is particularly high
for NIR (CLBP 11.6%, LBP 13.5%) while the improvement
for VIS is more modest (CLBP 1.7%, LBP 1.3%). This
suggests that particularly the NIR image sequences contain
a lot of redundant data (average 235 frames) that worsens
the performance when temporal interpolation and normali-
sation are not used.

4.3. Experiment 3: CLBP-TOP Components

Table 2 shows the results for different components of
CLBP-TOP using data from the well-performing NIR chan-
nel. As explained in Section 3.3, results with only the sign
component (S) are equivalent to LBP-TOP. The results from
using only M or C were constantly lower than S+M.

The best results for CLBP-TOP are achieved by using all
three components. This finding agrees with Guo et al. [6]
who found all components useful for static texture classi-
fication of two texture corpora. It is interesting to note
that even though the tasks are quite different (static texture
recognition on visual data and dynamic SVP differentiation
on near-infrared data) the results of the component division
experiments follow the same pattern. In general, S+M+C
yields the best results, followed closely by S+M and M+C,
and more distantly by S.

However, the improvement from adding the centre grey
level (C) is small. Using only S+M gets similar results. On
the other hand, the magnitude M of the local difference is

Components Method Accuracy
(%)

S+M+C FUS+TIM10 73.0
S+M FUS+TIM10 72.7
M+C FUS+TIM10 71.7
S+C FUS+TIM10 56.4
S FUS+TIM10 55.7
S+M+C LIN+TIM25 78.2
S+M LIN+TIM25 76.2
M+C LIN+TIM25 73.0
S+C LIN+TIM25 62.1
S LIN+TIM25 58.0

Table 2. Leave-one-subject-out results on the SPOS corpus com-
paring different CLBP-TOP components. NIR data were used for
this experiment. C is the centre grey level; S is the sign and M
is the magnitude of the local difference dp. TIMn denotes tem-
poral interpolation to n frames; LIN denotes the LINEAR classi-
fier; FUS denotes fusion of SVM, LINEAR and Random Forest
through majority voting.

clearly very valuable in particular for NIR data, yielding a
17.0–18.2% improvement for the classifiers in Table 2. This
is consistent with the findings of Guo et al. [6].

4.4. Experiment 4: Generic Facial Expression
Recognition

As explained in Section 3.5, previous work already pro-
vides solutions to LAYER2-MICMAC, MICRO, SPONT and
POSED. We refer the reader to the publications cited in Sec-
tion 3.5 for the details of their performance.

Our paper is the first to provide a solution to LAYER3-
SVP with a realistic corpus. This solution was evaluated
in Section 4.1. However, no solution previously exists for
LAYER1-FED. In this section we therefore evaluate our so-
lution for this final unsolved part of the cascade.

We combine the visual facial expression part of the
SPOS corpus with the SMIC micro-expression corpus [10]
to create a corpus that can distinguish any facial expression
from a set of frames. We use randomly selected 1

2 to 5 sec-
ond image sequences without facial expression as negative
data. The system can be used for on-line facial expression
detection by classifying sliding windows of a varying num-
ber of frames. Our experiments are equivalent to off-line
runs of the sliding window classifier.

Table 3 shows the results of our solution for LAYER1-
FED which involves detection of both facial macro and
micro-expressions. The results are reported without tem-
poral interpolation to conform with more practical run-time
performance requirements. Using an SVM on CLBP with
all components we achieve 58.8% accuracy. MKL with
HISINT and POLY kernels improves the result to 64.7%.
Using the Random Forest classifier improves on the result



Method Accuracy
(%)

CLBP+SVM 58.8
CLBP+MKL 64.7
CLBP+RF 68.6

Table 3. Leave-one-subject-out results for LAYER1-FED with vi-
sual data. SVM denotes support vector machines; MKL denotes
multiple kernel learning; RF denotes the Random Forest decision
tree classifier.

by 9.8% from SVM to 68.6%. Bearing in mind that recog-
nising micro-expressions is very difficult without first tem-
porally interpolating the image sequence, this is a promising
result that sets a good baseline for future work on this topic.

The run-time performance of LAYER1-FED and
LAYER3-SVP is chiefly limited by the performance of the
temporal interpolation and feature extraction phases. For a
25 frame facial expression sequence, the average classifica-
tion delay of a MATLAB implementation of TIM10+MKL
over 100 runs on a 2.66 GHz PC with 4 GB RAM is 1.1
seconds. 40% of this time is spent computing the TIM;
35% computing CLBP-TOP and 25% on the other steps
in Algorithm 1. Further speed improvements are possible
by parallelising the implementation and rewriting it in C++.
The performance overhead added by layering is minimal for
classification since TIM ξ, feature set µ and kernel K can
be shared between layers when their methods are similar.

5. Conclusions
We have shown the first method to successfully differ-

entiate spontaneous from posed facial expressions and de-
scribed a generic facial expression recognition cascade. Our
method uses graph embedding to temporally interpolate im-
age sequences and inputs the resulting frames through a
new SLTD into a set of classifiers. We have illustrated that
our new spatiotemporal local texture descriptor CLBP-TOP
outperforms other descriptors and that SVP differentiation
benefits from both temporal interpolation and near-infrared
images. Our system is the first to differentiate spontaneous
from posed facial expressions with a realistic corpus and
achieves promising results.

Future work includes expanding the SPOS corpus to
more participants, continuing the evaluation of the generic
facial expression recognition framework, and investigating
alternative temporal interpolation methods. We hope to en-
courage further work in this area by publishing the SPOS
corpus for public use.1
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